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ABSTRACT

Necessary and sufficient conditions for the hypoellipticity of an ordinary
differential operator with C* coefficients in a neighborhood of a zero of finite
order of the leading term are given. A sufficient condition for such an operator
to be in a certain Hérmander class is also given,

1. Introduction and statement of results

Let L be a differential operator with C*® coefficients. L is said to be hypoelliptic
in an open set Q if for every u € 2'(Q), Lu e C*(Q) implies u € C*(Q). Ordinary
differential operators, Lu = X ., a;(x)u’(x), are hypoelliptic in every open set
where a,(x) is different from zero, i.e., at all regular points of L. The problem of
determining whether a given ordinary differential operator L is hypoelliptic in a
neighborhood of a zero of a,,(x) has not been considered explicitly in the literature.
It is the aim of the present paper to characterize the class of all hypoelliptic
ordinary differential operators for which a,(x) does not have a zero of infinite
order (this class contains all hypoelliptic operators with analytic coefficients).
As an illustration of this characterization, we shall give an example of. a first
order hypoelliptic operator, which is contained in no previously known class
of hypoelliptic operators.

In order to state our main results, let us recall briefly some notions and facts
from the classical theory of singular points of ordinary differential operators
(a more detailed description may be found in Section 2). Let a;(x), 0 £ j = m,

be C* functions in a neighborhood of a certain zero of a,,(x) (a possibly singular
point of L), which we take to be the origin, and we assume that a,(x) vanishes

at most to a finite order at x = 0. 1t is well known ([7], [8]) that there exists a
106
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system of m linearly independent formal solutions u;(x), -, u,(x)of Lu =0
with

(1.1) u(x) = e2Ox iy (x)

where the Q,(x) are polynomials in x~ '/ % and
(1.2) v:(x) = Z v, ;(x)(logx)’
j=0

1.3) 0; j(x) ~ OZOZ( v X
n=0

for 0 £j £ m;, 1 £i < m. Here m;, q; are integers ((m; 2 0, q; > V) and
the series in (1.3) do not converge, in general, even if the a;(x) are analytic.
(The equations Lu; = 0 hold in the sense of formal power series; the coefficients
a,(x) are replaced by their formal Taylor expansions at the origin.) The functions
Q.(x) are called “‘determining factors”’. Clearly, we can assume that the constant
terms vanish in the determining factors. Let » denote the number of the deter-
mining factors which vanish identically, and assume that Q,(x) = --- = Q{x) = 0.
We shall prove

TueoreM 1. L is hypoelliptic in a neighborhood of the origin if and only if
(i) a.(0) # 0 and (i) | Re Q,(x)| = o0 as x - 0 for r < i < m.

While it is true that the determining factors are computable from the co-
efficients a;(x) (see [7], [8]), the actual verification of condition (ii) of Theorem 1
is not easy, in the most general case. In many cases, however, the conditions of
Theorem 1 can be given a more explicit form.

Thus, in accordance with the usual notation in the literature on partial dif-
ferential equations, set p(x,&) = X oa;(x) (i¢y) —the (full) symbol of the
operator L. It is well known that there exist m complex valued functions
{100, -, {u(x), which are continuous in a neighborhood of the origin except at
x = 0, such that p(x,&) = a,(x) []7=1 € = {;(x)). The functions {;(x), -, {u(x)
are called branches of roots of p. We shall say that the operator L satisfies the
condition (S) if, whenever {,(x) is an unbounded branch of roots of p(x,&) and
i(x)/{(x)—1 as x =0, then i = j (i.e., all unbounded branches are ‘“‘asymp-
totically simple””.) If condition (S) is satisfied, then the determination of the
determining factors is relatively easy, and we shall prove
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THEOREM 2. Let L satisfy the condition (S). A necessary and sufficient con-
dition for the hypoellipticity of L at a neighborhood U of the origin is that
there exists a constant C >0 such that for x in U and { a complex number
satisfying p(x,{) = 0, either] 4 ' <C or[x” ImC] - o0 as x - 0.

Another class of hypoelliptic operators is exhibited in the following theorem.

THEOREM 3. If there exist a neighborhood U of the origin and a constant
C>0 such that for xinU, { a complex number satisfying p(x,{)=0, either
@) |C| < C or (i) le IImC|—>oo and ClImC, > ,ReC] as x>0, then there
exist constants 0 X6 < p =1 and a real number m’, such that for every pair
(o, B) of non-negative integers and for every compact subset K of U, there exist
constants C(K) and C(a, B, K) such that the inequalities

(a) |p(x,&)| 2 C(K)[&|™
" p(x,&)
o&ox’
hold for x e K, ¢ a real vector, [£] 2 C,(K).

It follows from theorem 4.2 in [5] that if (a) and (b) are satisfied, then L is
hypoelliptic. The class of operators described in Theorems 1 and 2 is strictly bigger

(b) < Clo B, K)(L+ | ED T  p(x, &)

than the class of operators described in Theorem 3. In fact, consider the first order
operator Lu = x*u’ + (i + x)u. Then p(x,&) = ix3¢ + i+ x, dp/dx = 3ix*¢ + 1,
Oplot = ix3. For £ = —x73 we get p= —¢7%, 0pJox = —3iE¥ + 1, opo¢
= — ¢!, If condition (b) were true for a compact neighborhood K of the origin,
we would have | dp /x| [dp/0¢||p| ™2 £ C(1,0,K)C(0,1,K)(1 + |&]) T** &> 0as
¢ — oo, since § < p. But for the specified pairs of (x, &), l@p/ax l ]ap/ac Hp|_2
~3|EPe| e [t = 3as&— oo, a coatradiction.

It follows, however, form Theorem 1, that L is hypoelliptic. We know of no
previously investigated class of hypoelliptic operators which contains L.

As a particular case of Theorem 1, we note that an ordinary differential operator
can be hypoelliptic in no neighborhood of a regular singular point. We note also
that if Lu = xMu where M is an operator with C® coefficients, then L is not
hypoelliptic in any neighborhood of the origin, since then a,(0) = 0.

It is well known [3] that for every non-elliptic hypoelliptic differential operator
L with constant coefficients there exists a hyperfunction u such that Lu e C*(Q)
but u ¢ C*(Q) where Q is an open set (so that u cannot be a distribution in Q).
All ordinary differential operators with constant coefficients are elliptic. We shali



Vol. 13, 1972 HYPOELLIPTIC DIFFERENTIAL OPERATORS 109

show that for many, though not for all, non-elliptic hypoelliptic ordinary differen-
tial operators with analytic coefficients, there exists a non-C* hyperfunction
solution of Lu = 0 with suppu # {0}. (Thus, ¢/** is a hyperfunction solution
of the hypoelliptic equation x*u’ +2u = 0, but the hypoelliptic equation
x’u’—2u =0 has no non-C® hyperfunction solutions with supp u # {0}).
1t is easy to see that there exists no non-smooth hyperfunction solution of Lu = 0
with suppu # {0} if and only if ReQ;(x) > — o0 as x>0 for r<j < m (see
Section 3). If condition (S) is satisfied, then this condition can be expressed in terms
of zeros of p(x,{) (see Section 6). On the other hand, there always exists a hyper-
function solution of Lu = 0 with suppu = {0}, if the origin is an irregular
singular point. Hence, all hyperfunction solutions of an ordinary differential
operator L are smooth if and only if L is elliptic.

Note that an ordinary differential operator with analytic coefficients is analytic-
hypoelliptic only if it is elliptic (unlike certain partial differential operators which
are analytic-hypoelliptic without being elliptic). This is obviously true for opera-
tors L which admit C® non-analytic solutions for the homogeneous equation
Lu = 0. In other cases, where all distribution solutions of the homogenous equa-
tion are analytic (e.g., for Lu = x3u’ + 2u), it follows from the arguments of
section 3 that there exist analytic functions f such that the equation Lu = f possess-
es a smooth solution u € C*, but u is not analytic.

We remark that an ordinary differential operator is locally solvable at a point
where it is hypoelliptic (given that a,,(x) does not vanish to infinite order). This
follows either from the method of proof of Theorem 1 or from the fact (also
mentioned in section 3) that the formal adjoint of L satisfies the conditions of
Theorem 1 if these conditions are satisfied for L. Thus, the phenomenon exempli-
fied in [10] cannot occur in our present situation.

We hope to return the questions of the ‘‘explicit’” determination of the de-
termining factors and the verification of condition (ii) of Theorem 1 at another
time. We remark in passing that, thus far, we have succeded in doing this for
the most general second order equation.

I am very much indebted to Professors B. Malgrange and B. Helffer for bringing
to my attention an error in an earlier version of this paper, one in which the
importance of the condition (S) was overlooked, and to Professor S. Agmon
for suggesting that the theorems remain true for equations with C* coefficients,
rather than analytic coeflicients.
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2. Structure of solutions near singular points

In this section, we summarize, in a form suitable for our purposes, several
essentially well known results about the structure of the solutions of an ordinary
differential equation in the neighborhood of a singular point. We shall assume,
unless otherwise stated, that not all the coefficients of the operator
Lu = X"_,aix)d’u/dx’ vanish at the singular point, which we take to be the
origin. We shall also assume that the functions a;(x), 0 <j<m, are C*in a
neighborhood of the origin. Let n; be the order of the zero of a;(x} at the origin.

We assume throughout that n,, < co. Suppose first that the functions a;(x) are
holomorphic near x = 0. Then the symbol p(x,&) = E"_,a;(x)(i€)’ can be fac-

torized, by means of Puiseux series, as
frel

2.1) PO = ™ T (€ — 3 a0
ji=1

k=N(j)

where ¢ is a positive integer, N(j) is a finite (positive or negative) integer, c¢(x)
= a,(x)/x™"is non-zero in a neighborhood of the origin, o; y¢; 7% 0 unless «; , = 0
for all k, and the series converge in a (maybe punctured) neighborhood of the
origin (see e.g. [4, p. 275]). If the functions a;(x) are only assumed to be C* near
x = 0, then each a;(x) gives rise to the formal power series

g @O

n=0 n! ’

and (2.1) holds in the sense of formal power series; the series
p I NG ocj,kx""’ are formal fractional power series, and do not converge, in
general.

Recall that the characteristic index [1] or the class [ 2] of the operator is defined
to be m — r, where the integer r, 0 < r £ m, is specified by the requirements
2.2) nj—j>mn—r for j>r

n;—jzn —r for j<r.

Set B(j) = N(j)/q if a; ;) # 0 and B(j) = oo if «; ; vanishes for all k. We shall
assume, from now on, without explicitly mentioning it, that the factors in (2.1) are
labelled in such a way that the sequence fA(j) is non-increasing. We claim that
p(r) = — 1, and f(r + 1) < — 1. By equating the coefficients (in (2.1)) of
x"¢ we see immediately that n; = n,, + X i=j+1 B(k), and that if B(j) > B(j + 1)
then n; = n,, + X'%-;+; B(k). Let p be defined by p = max {j : B(j) = — 1}. Then
B(p + 1) < — 1 which implies n, = n,, + X4, (k). For j > p,
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m-nz % p0 - X p0= - X =i

k=j+1 k=p+1
For j < p,
m m P
nj—n,z X pk)y—- X Bky= X Pk)zj-op
k=j+1 k=p+1 k=j+1

Hence n — p is the characteristicindex and p = .

The equation Lu = 0 possesses an indicial equation of order r. This indicial
equation is obtained by equating to zero the coefficient of the lowest order term
in the expansion of x™ L(x") (this formal expansion exists not only in the analyt-
ic case, but also in the C® case). It is clear that the lowest power of x in that expan-
sion is n, —r, and that the functions a,(x) for j > r have no relevancy for the
indicial equation. Note also that for r=0, the indicial equation has no roots, and
that r =m corresponds (in the analytic case) to a regular singular point at the
origin.

Using the roots of the indicial equations, one obtains (by equating coefficients)
r distinct formal power series solutions of Lu = 0; if several roots coincide or
differ by integers, then formal log-power series are obtained. If r < m or if the
coefficients are not analytic, then those formal power series do not necessarily
converge. It can be shown, however, that they represent, asymptotically, » linearly
independent actual solutions of Lu = 0. This last fact is proved explicitly in the
literature [7,8] only under the additional assumption that a,(z) are analytic for

r

z=re' | R 9|< g, &> 0, and will be used only under this assumption.

Turning now to the remaining m - r solutions of the homogeneous equation,
we recall that in the classical theory one looks for functions Q(x) of the form

00 = ¥

k=1
(here g is not necessarily the same as in the Puiseux expansion (2.1); rather, it ig
a multiple of the integer occurring in (2.1)) such that the linear differential operator
M defined by Mv = e”?L(¢%v) has a characteristic index which is strictly less
than m. Such a function Q(x) is called a “‘determining factor”. (Note that (2.2)
and the discussion following it are valid also if a;(x) are expandible in fractional
power series; in that case, the solutions are given as log fractional power series.)
Let Q(x) be such that the characteristic index of M is m —j < m, so that the
equation Mv = 0 possesses an indicial equation of order j > 1, Hence j formal

(log) fractional power series expansions exist for v, and it is shown in classical
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texts (e.g., in [7]), that the resulting series for u = ¢%v represent asymptotically
as x — 0, actual solutions of Lu = 0. Moreover, using all possible determining
factors, we obtain m — r linearly independent solutions of Lu = 0. In this manner,
the existence of m linearly independent solutions (1.1)—(1.3) is established in the
classical theory. (Once again, the m — r linearly independent formal solutions
exist always; the existence of actual solutions is proved in the literature under the
additional hypothesis that a(z) are also holomorphic for z = re'?, 0 <| r| <,
|8] < e, for & small enough.)

The Puiseux expansion (2.1) gives us a simple expression for the determining
factors under the following restriction. We say that the symbol p(x, &) satisfies
the condition (S’) if whenever — 1 > (i) = B(j) but i # j, then o; y¢;y # &; neiy -
In fact, if the condition (S’) is satisfied, then the derivative of the determining
factor Q; is given by the following simple formula:

. —a-1
(2.3) ‘iQ—J‘ =1 E aj kxk/q j =r++ 1,...’m.
dx k=N

In order to verify (2.3), rewrite M, using Leibnitz’s rule and setting e~ 2(¢2)™"
= S(n, x), as

Mv

m 7 PN
e 2Le%) = Tax X (J )e'Q(eQ)U_")v(")
(2.4) im0 a0\l

5 ( 5 (Jh)a SIS = )00 (o).

h=0\j=h J
Note that S(0,x) =1 and S(n +1,x) = S'(n,x) + S(n,x)Q’(x). Setting now
Q'(x) = Xj_, 416X %, we see immediately (by induction) that

S(n,x) = [@'W]" + R,(x)

where R,(x) is a polynomial in x ™/

of degree not exceeding (n — 1)s + q. Hence
the lowest s — g terms in the coefficient of v in M appear in X7_ga j(x)(Q’(x))j.
Set ming<,<,qn, — st = wandset K = {t:0 < t < m, qn, — st = w}.

Then the lowest term in the coefficient of v in M is the term of order w/q appear-
ing in X, x a,(x)(Q'(x))’, and the lowest term in the coefficient of v’ is the term
of order (w+s)/q in X, .xta,(x)(Q'(x))"L. If condition (S’) is satisfied,
s = — N(j) — q and Q'(x) is given by (2.3), then the value of n, for M will be
exactly equal to (w + s)/q, whereas the lowest (s — ¢) terms in the coefficient
of v will all vanish. Thus the value of n, for M is at least w/g + (s — ¢q)/q¢ = n, — 1.
Hence r = 1 for M and Q is indeed a determining factor.
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If condition (S’) is violated, then other (much more complicated) methods
have to be employed in order to calculate the complete determining factors; only
the leading (lowest) term of the determining factor is given, in the general case,
by means of (2.3) (this was pointed out to the author by B. Malgrange and B.
Helffer). As mentioned earlier we hope to return to this question in the future, and
remark here only that the second order case has been settled completely.

Note that if the functions a;(x) are holomorphic for x # 0 in a sufficiently
small sector, so that the formal log-power series represent asymptotically an actual
solution u of Lu = 0, one may differentiate the series to an abitrarily high order
and obtain an asymptotic representation of the corresponding derivative of u.
While it is proved explicitly in [7] that one might differentiate the asymptotic
series m — 1 times, we see, considering also the equation (of order m + k)
(d*/dx*)Lu = 0, that we may differentiate up to the order m + k — 1, with k
arbitrary.

3. Proof of sufficiency in Theorem 1

Let us assume, to begin with, that the coefficients a,(x) of L are C* functions
in a neighborhood U of the origin and are holomorphic functions of z in a sector
z=ré"% 0<|r| <e | 0] <e, for & small enough. Then the structure theory,
described in Section 2, applies ([7], [8]), and (1.3) is valid asymptotically. (The
analyticity assumption will be removed at the end of this section.)

Assumption (i) of Theorem 1 and (2.2) imply that a,(0) # 0, a/0) = 0 for
j>r. Thus the indicial equation of L is a{Q)p(p —1)---(p —r+ 1) = 0; its
roots are p = 0,1,---,r — 1. No logarithmic terms occur here (even though the
roots differ by positive integers) and the resulting r formal power series represent
asymptotically r linearly independent C* functions u,(x), 1 < i £ r, in a neigh-
borhood of the origin.

Assumption (ii) of Theorem 1 implies that for every non-vanishing determining
factor Q,(x) (r < i £ m), either ReQy(x) » + c© as x > 0,, or ReQ;(x) > — ©
as x - 0,. If for some i, r <i < m, u,(x) = e¥™p,(x) (where v,(x) is represented
asymptotically by a (log —) power series — see (1.2) and (1.3)) is the restriction
of a distribution ue2'(—e¢,e)(e>0) with Lu =0, then ReQ,(x)—» — .
Otherwise u; is the restriction of a hyperfunction solution, but not of a distribution.
In fact, it is easy to construct a sequence ¢,(x) € C3 (0,¢) with | ¢,[|, £ C(s)n"®
for all real s, but | [e®“v,(x)p,(x)dx| > &' for some positive 8. If Re Q,(x)
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— — o0, then e

, and consequently u,(x) (as well as all the derivatives of u,(x))
has a zero of infinite order at x = 0,. A similar argument shows that u,(0_)
=u{"0_) = - = u!™(0_) = .- = 0. Hence all distribution solutions u; of
Lu = 0 (which are represeented in (1.1)-(1.3)) are C* functions in a neighborhood
of the origin. (Caution: a distribution solution might vanish identically for x < 0
and be non-zero for x >0, e.g., Lu = x*u’ — u.) Note that the same argument
shows that there exists a non-smooth hyperfunction solution of Lu = 0 with
suppu # {0} if and only if ReQy(x) » + oo for x » 0, or x> 0_, for at least
one index r <i < m,

We claim now that all distribution solutions of Lu = 0 are C® near the origin.
We still have to prove thatif u = X7 ¢, H(x)u,(x) + E’i‘:odiém(x) is a distribution
solution of Lu = 0, then¢; =0forl £ i<randd;,=0for0<i < k(Hx)is
the Heaviside function, H(x) =1 for x >0 and H(x) = 0 for x <0). This,
however, follows immediately from the non-vanishing of ¢,(0). In fact, the relations

LHX)X) = HX)Lx' + a,000" 7" D)+ X ¢,6 7 D(x)

rzi>j
and

LEP) = a (06" (x) + T f;,64(x)
i<r

imply, first of all, that d,a,(0)8" ™(x) cannot be cancelled by other terms of Lu,
so that d, = 0. Repeating the argument, we see that all the d,’s vanish. Now
¢,a,(0)0" ™1 cannot be cancelled by any other term; hence ¢, = 0, and so forth.
(Here we have set u,(x) to be the solution corresponding to the root p =i —1
of the indicial equation, 1 £ i £ r.)

It remains to show that for every fe C*(U) there existsa C® function u, defined
in a neighborhood of the origin, such that Lu = f. Setting x = 0 in the differential
equation, we get

r—1
a,0)u®©0) + X a 0u(0) = f(0).
ji=0
By Leibnitz’s rule,
k . ko k .
A @ ]mo= T ()00,
dx I=ny; \

Let m = j > r. Since n; > j — r for these values of jby (2.2) and assumption (i),
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we seethat j + k — 1 < j+ k— n; < k + r. Hence we obtain, by differentia-
ting Lu =f k times and equating to zero, that

(3.1) a,.(())n(k“)(()) + by ck’su(s)(o) ___f(k)(o)

sZk+r—1

where ¢, , are constants. Thus we can find (choosing u(0),u'*(0),--,u®"1(0)
arbitrarily) a sequence {u”(0)}2, which satisfies the infinite triangular system
(3.1) of linear equations. It is well known that for every infinite sequence
80,81, , 8, there exists a function v e C3(R") with v™(0)=6,forn=0,1,2, ---.
Setting 3, = u‘”(0) we obtain a function ve C(R') having the property that the
C® function g defined by g = Lu — f satisfies g™(0) = 0, n=0,1,2,---. (g is
defined only in a neighborhood of the origin). Hence we have to consider only the
inhomogeneous equations Lu = g where g™(0) = 0 for all n = 0.
Recall the well known variation of constants formula:

(3.2) u(x) = E”Z, ci(x)u;(x)

where u,(x),-:-,u,(x) are linearly independent solutions of Lu = 0, and the
coefficients c;(x) satisfy the relation

de;  Ayx)
(3.3) o YE

g(x)

where A is the Wronskian determinant W(u,,---,u,), and A; is the algebraic
complement (cofactor) of /™" in the Wronskian. Let uy, -, u,, be the solutions
represented asymptotically by (1.1)-(1.3). It is proved in [7] that

Afx) _

~Qi(x} ;
AG) e wH{x), j>r

where w;(x) is analytic for x % 0 and x"wj(x) is bounded near x = O for N large en-
ough. Actually there is a gap in the proof given in [7], since the possibility of r > 0
(in our notation) is completely overlooked. Nevertheless, the argument of [7] can
easily be modified so as to take care of that case also. We now observe that L*,
the formal adjoint of L, has the same characteristic index m — r (see e.g. [1, 2];
it is even possible to show directly that the determining factors of L* are minus
the complex conjugates of those of L). Moreover, it is well known (and it follows
easily from the variation of constants formula) that the complex conjugates of the
functions A;(x)/A(x), j = 1,---,m form a linearly independent system of solutions
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of L*w = 0. There are exactly m — r linearly independent solutions of L*w =0
which are not representable, even asymptotically, as sums of formal log-power
series. Hence those solutions are precisely the complex conjugates of A;/A,
r + 1 £j £ m, which proves that w;(x) is expressible asymptotically as the sum
of a formal log-power series, and that there exist constants M(k) such that
xMO(A(x) [A(x))® is bounded for x>0, k = 0,1,-,1 L j<r

It clearly suffices to prove the existence of a solution u (of the equation Lu = g)
defined for > x > 0, such that for all k, lim u®(x) exists and is equal to zero. Set

x—04
A1) ifj<rorifj > rand
Hdt
[ L A £ Re 0,(x)> +
(3.4) ¢(x) = x—=0,
"AL1) if j > rand
fx AQr) 804t Re 0,(x) = — @
x = 0,

It is then clear that c,(x)u;(x) tends to zero as x —»0,, and the same holds for
derivatives of all orders of c;(x)u;(x), for 1 £ j < r. Set ReQ;(x) = Ryx),
If R(x)—> + oo as x » 0, then

X
¢ (X)u;(x) = vj(x)e PR RID f wi()e " y()e ™0 dr.
o

Fach of the functions Re c;(x)u;(x) and Im¢;(x)u;(x) is a linear combination with
constant coefficients of terms of the form ¢ (x) = P(x)e™/™ {5e "R/Op(1)dt where
(1) h(t)e C*[0,£), K®(0,) = 0 for all k 2 0 and h(1) is real for 0 < ¢ <e;
and (2) for every n there exists a constant m(n) such that x™™ P™(x)
is bounded as x = 0. Let k be an arbitrarily large positive integer. By L’Hopital’s
rule,

) e O p()dt
lim ¢(x) L

= lim
x-0 4+ P(x)xk x=-04+ xke—Rj(x)
—R j(x)
. e Y h(x
= lim (x) = 0,

x>0+ e—Rj(x)(kxk—l _ R}(x)xk)

since R;(x) is an algebraic function. In particular, ¢(x) —» 0 as x ~ 0. Differen-
tiating once, we get



Vol. 13,1972 HYPOELLIPTIC DIFFERENTIAL OPERATORS 117
¢'(x) = (P'(x) + Ri(x)P(x))e”™ f e “RWp)dt + P(x)h(x).
0

The same argument (use of L’ Hopital’s rule) applies to the first term, and the
second term has a zero of order infinity, Thus lim ¢'(x) = 0, and so on. If

x-0.

Ri(x}—> — o as x > 0, then

€

cj(x)uj(x) = vj(x)eilmQ,i(x)eRj(X)J wj(t)e Ry, —iImQj(t)g(t)dt

x

and we have to consider terms of the form

£
Y(x) = P(x)eR/™ f e “ROp(t)dt, where h and P satisfy the same conditions

X

1) and (2) as above. Consider now the expression

Y(x)  [ie *On(ndt
P(x)x*

. If the numerator does not tend to infinity as x = 0.,
=R ;(x)_k
e X

we are through. Otherwise, we apply L’Hopital’s rule once again and obtain
: ¥(x)

If the functions a(x) are only assumed to be smooth near x = 0 (and n,, < ©),
we construct, (as is possible according to [8]) C* functions b;(x) which are
analytic for x = re”, 0 < I r| <e, I 0’ < ¢ for ¢ small enough and which moreover
satisfy the equations a{(0) = »{?(0) for all k > 0. The operator

= 0 and then continue for the higher derivatives.

M = Zb(x)d’/dx’

satisfies the conditions of Theorem 1 if and only if L does, and the desired con-
clusion will follows from

LeMMA 3.1. Let Lu = X [_oa,(x)d’u/dx’, Mu = X7_ob)(x)d’ujdx’ be dif-
ferential operations with C® coefficients in a neighborhood of the origin, such
that a¥(0) = b{P(0) for k =0,1,2,--, 0<j<m. Let a,0)=b,(0)=0,
but ai(0) = b¥(0) % 0 for some positive K. Then L is hypoelliptic near
the origin if and only if M is hypoelliptic near the origin.

PrROOF. We restrict our attention to a neighborhood (—¢,¢) of the origin, in
which a,,(x) or b, (x) vanish only if x = 0. Assume that M is hypoelliptic near
the origin, and let u € 2'(—e¢,¢) be such that Lue C*(—¢,¢). But Lis elliptic for
x#0, [x[ <. Hence ue C¥((—¢,0) U(0,¢)). There exists a continuous func-
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tion ve C[—¢/2,¢/2] and an integer n such that d"v/dx" = u in (—¢/2,¢/2) [4,
p. 8]. Thus |v(x)| £ C for |x| = 3/2 and some constant C, and

m+n

Z a} ,,(X)—— f‘
dx’
We shall demonstrate, more generally, that if ve C*((0,¢/2) U(—¢/2,0))
U C[ —¢/2,¢/2] is a solution of the equation

(3.5) 2 CJ(x) + g(x)

for 0 < |x| < ¢/2, where for every positive integer k there exist constants D(k)
and m(k) such that

[P, [eP®)] € D] x|["®  for 0<|x| <é,
then for every positive integer k there exist constants C(k) and n(k) such that
(3.6) [vPx)] = Cllx®  0<|x|<sf2.

Clearly, it suffices to prove (3.6) for 0 < x < ¢/2. Let x, be any number in (0,¢/2),
and let ¢ C®(R') be such that ¢(x) =0 for x <1, ¢(x) =1 for x> 2,
0= ¢(x) £1 for xeR?Y, and set ¢(x,a) = ¢(x/a) for a > 0. It follows from

(3.5 that
[(;S(x, J;O) v ](N) = N—O e (x) + h(x)

J

where e;(x), h(x) = 0 for x < x,/3, and for every positive integer k there exist
constants D(k,1) and m(k,1) such that

(3.7) [ef0x) |, | RP(x) | £ Dk, 1)xg ™D for 0 < x < xo.

Hence we obtain from integration by parts of the well-known formula

w(x) = g} i)' w™(t)dt + Nilw(j)(O);_c—‘i,
j=0 '
that
X -t s Te(Hx—-0 !

d)(x,?o)v(x) = J‘U(t) E( 1) dt} [W:ldt +

3.3)
x _fN-1
+ (’(‘Tt_)l)—!h(t)dt.

Differentiating (3.8) (with respect to x) for 2/3x, < x < x4, we see, taking (3.7)
into account, that
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|(x)| < C(D)x" " for xe[(2/3)xq,%,].
Differentiating (3.8) once more and using also the estimate for v'(x), we see that
[v"(x)| < C(2)xg ™Pfor x € [ (2/3) X, X0 Iterating the procedure we obtain the
estimate (3.6).
Using (3.6) for the function ve C[ —¢/2,¢/2] where d"v/dx" = u in (~¢/2,¢/2)
(in distribution sense), we see that for ¢ € C5(—¢/2,8/2),0<j £ m,
d’u wri [ F dnti
[a/09 = 5,1 @) = (=1 [ o) = La,) = b0
dx’ o gxttd

- f T o) [a,(x) — b (x)] (x)dx,

-t

so that the distribution [a;(x) — by(x)]d’u/dx’ is the C® function [a;(x)
— by(x)] d"v/dx"* in (—¢g/2, ¢/2), since the function a;(x) — b,(x) along
with its derivatives of all orders has a zero of infinite orderat x = Ofor0 < j £ m.
Hence Lu — Mue C®(—¢/2,¢/2) and Mue C®(—¢g/2,¢/2). The hypoellipticity
of M implies that u € C* in a full neighborhood of the origin.

4. Construction of certain distributions

In proving the necessity of the conditions of Theorem 1, we shall have to use
certain distributions which are encountered frequently while solving homogeneous
differential equations near singular points.

Recall the definition of the famous Heaviside function:

>
Hx) ={I x=0
0 x<0

For Rea = 0, the function H(a,x) c?—Efx"‘H(x) is defined everywhere and it oper-
ates naturally on C§ functions (by integration) so that it is a distribution.
Moreover, for Rea > 1, dH (&, x}/dx=aH(ax—1, x), both in the classical sense
and in distribution sense. We now define for Reax < 0, « not an integer,

def 1 d"H

Hex) = e a s av

(ot + n,x)

where n > —Re« and the differentiation is in distribution sense. It is clear that
this definition is independent of n, and that H(x,x) is a continuous function for
x # 0, H(x,x) = x*H(x) for x #£ 0.

Let now n> —Rewa. Applying Leibnitz’s rule (which is valid for the product
of a C® function and a distribution), we obtain
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da _ . d'H(x+ n,x) d"-*H(o + n,x)
Fr (xH(o + n,x)) =x I +n 1

= xH(o,x)(oc + 1)+ (a+n)+nH(x + 1,x) (e +2) -+ (ot + 1n).
On the other hand,

d—d)-c—,,(xH(oc +n,x)) = %H(a-# n+1,xy=H@+ 1,x)(a+2)-(a+n+1).

Combining these, we see that
4.1) x H(o,x) = H(o + 1,x) for o not a negative integer.

We have to proceed somewhat differently in order to obtain sunitable distribu-
tions from terms like (In|x|)"/x*. Observe first that

(4.2) x%(lnlxl)’” = m(In|x|)"™*

where m is a positive integer and the differentiation is to be understood in distri-
bution sense. (Note that (1n| x|)"’, a locally integrable function, is a legitimate
distribution.) Indeed, for arbitrary ¢ e C3(R"),

x50 x)@) = Lan|x|(xd) = —n|xP(Cx)
= = [ tn]x g+ dlnas

= —lim [fjw + J;m] (In|x])™(x¢'(x) + d(x))dx.

&0
The last equation follows from Lebesgue’s dominated integration theorem.
Integrating by parts, we obtain

f w(lnlx])"‘xq&’(x)dx = x(In|x|)"p(x)|? — f w(1n|x|)m¢(x)dx

_ f oom(ln] x |) m=lh(x)dx .

Using the dominated integration theorem once again, we see that

fo w(ln]x[)'"xq&’(x)dx - Jj(lu}x])%(x)dx— j:m(m\xbm-lqs(x)dm

Similarly,

0 0 0
f _ (n]xp"xp'(x)dx = - f (In]x|)"¢(x)dx — f_ m(ln | x )"~ $(x)dx.

0
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Hence

x L[ ](8) = mlia] x|y (@),

We now define, as a first step, the regularization R(x ) of 1/x* (kis a positive
integer) to be the distribution (—1)*~*/(k—1)! d*In| x |/dx* (differentiation in dis-
tribution sense). Setting m = 1 in (4.2) we see that xR(x~!) = 1. Applying
Leibnitz’s rule to this product of a C* function and a distribution, we obtain

dk—l - d k 1
0 = = ——(xR(x ))—x;—ln]xl+(k—1)~—ln|x|

= (=D (k=DIRE = xR(xTH),

or xR(x™%) = R(x™**1). Set also

def 1 i
n+ 1 dx

)n+1

R(x"}(In|xp") = (In]x

for n =z 0, where the derivative is the distributional derivative.

Suppose now, inductively, that a regularization R(xj(lnlx])") of x'(In
has been defined already for 0 £ n < m and j an arbitrary integer, or for n = m
and j = k, in such a way that the relation

(@) xR(x(In|x])" = R(x***(In|x|)"

holds for n < m and j arbitrary or n = m and j = k, and the relation

(b) j‘fz R(x'(In|x

"1 + jRCx " H(n | x )"

YY) = nR(x''(In|x

holds for n < m and j arbitrary or n = m and j > k, and the derivative is the

distributional derivative. We define then

defll

R(x*~!(In]x )™ R(x*(In|x )™ — mR(x*"'(In | x )"~ l]

The right hand side is well defined, by the multiple induction. The condition (b)
is automatically satisfied. To prove (a), we observe that by Leibnitz’s rule,

(4.3) %(xR(xk(1n|x|)M) = x(;ixR(xk(lnlx|)"')+R(xk(ln| xP™.

On the other hand, applying (a) in the case n = m, j =k, we see that
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xR(x"(In|x|)™ = R(x*"'(In|x|)™). Using (b) in the case n =m, j =k +1,
we may thus rewrite (4.3) as

mRGH(In [ x])™ ™) + (k + DR (n|x )™ = x %R(x"(ln |x[)") + R(x"(n [x|™) .
The last equation can be rewritten (using (a) now for n = m—1 and j = k) as
x%R(xk(ln| x|y = mxR(x*~Y(n [ x|)"™Y) = kR(x*(In|x )™,

from which (a) follows in the case n = m, j = k—1.

Summing up, we conclude that we have found regularizations of the functions
x"H(x) (if  is not a negative integer) on one hand, and of x’(In| x| )™ (for j arbi-
trary integer, m non-negative integer) on the other hand, in such a manner that
the formal rules of differentiation and of multiplication by integral powers of x
carry over from the functions to the distributions.

We have also to find a suitable distribution wu,(x} such that
uy(x)=H(x)x"exp (i Xj_,c,/x™) for x40, where 1 is an arbitrary complex number,
¢, d, arereal numbers,and d, > 0,1 < k £ n.Assume without loss of generality
that d, > d,_; > --- > d, . For Re . = 0 there are no problems, since the function
x*exp(i T¥_, c,/x™) is bounded near the origin. Furthermore, the equation
xuy(x) = u;,,(x) holds for Rel = 0. Suppose now that distributions u;(x)
have been defined for Redl = —j (d, — d,_;) (J is a non-negative integer) in
such a way, that the relations

n

6] ul(x)=H(x)xlexp(i )y ) x#0

k=1 3

Ck

and

(i) xuy(x) = z44(x)

hold for Rei = —j(d, —d,_,). Set now, for ReA < —j(d,—d,_,),

def i ot d
(4.4) uy(x) = _ A+ d,+Duy gy (x)—1i Zad g g — “A+a,,+1]
cpd, k=1 dx

(the differentiation is in distribution sense). This definition is legitimate for
Rel = —(j+ 1)(d,—d,_,), since for such values of 1,
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Re(A+d,~d)zRe(A+d,—d,-) 2 —(j+ D(d,—dy) +dp— d,\—y
= —jld, — dy-1)
and
Re(A +d,), Re(A+d, +1) =2 —j(d,—d,-,).

The relation (i) obviously holds for the new values of A. Using the induction
hypothesis and (4.4) we see that

n—1

—i ! d
xuy(x) = od [(/1 +d, + Ditgig,+(X)— lk=zlckdku}»+d"—d}(+l - xd_)zu}.-l»d,,-Pl]
4.5)

—i n—1

o d [('1 +d,+ 20U 44,4+ () =i k_zl iy g, -+ 1(X)

d
—~Uypg,+1(X) — X ;&“Hd"n .

Application of Leibnitz’s rule to the product xu; 4 41 = U344+, (this equation
follows from the induction hypothesis) and insertion of the results in the right
hand side of (4.5) yields

i n—1

. d
xuy(x) = — cd [('l +d, + 2)“1+an+1(x)‘ lkz_llckdk”/l+d,,—dk+1(x) - E}u“"n”]

= uz41(x),

the last equality following from the definition (4.4) of u,, ((x) (note that (4.4)
obviously holds for Rel = 0).

In a similar manner, we can define a family #, of distributions, in such a manner
that

i (x) = H(— x)x*exp (i b ck/x"")
k=1
for x # 0, and (ii) and (4.4) are satisfied (with #, replacing u,). This can be done

of course, only if the real numbers d, are such that ( — 1)’ is real (for at least
one branch).

5. Proof of necessity in Theorem 1

In proving the non-hypoellipticity (at the origin) of an operator L, whose only
singularity is the origin we shall frequently use the following simple
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PrROPOSITION. If L is hypoelliptic in an open set V containing the origin,
then for all k,n =0 there exists a natural number N such that if
Lue CY(V) and ue H (V) then ueC (V).

As a matter of fact, u e C¥*™(V — {0}) since Lis elliptic in V — {0}. Set

HY(V)x C*(V) > F = {(u,v): Lu = v}.

Then the projection P: F — H'y(V) is really a map P: F —» C*(V) due to the
hypoellipticity of L. Appplying the closed graph theorem to P and noting that
{0} is a compact subset of ¥, we obtain the proposition. (Similar propositions
are frequently used by L. Hérmander.)

Let us assume, to begin with, that all the coefficients a;(x) are C* in a neigh-
borhood of the origin and holomorphic in the sector z = re', 0<|r| <g,
l 0[ < ¢ for &> 0, that a,(0) # O for at least one index j, and that the multiplicity
of the zero of a,,(x) at x = Qs finite. The conditions of Theorem 1 are not satisfied
if either (i) a,(0) # 0 or (ii) Q,(x) is purely imaginary in a (possibly one-sided)
neighborhood of x = 0 for at least one index j, r < j < m. ((i) and (ii) are not
mutually exclusive.)

(i) In this case n, > 1. Recall that the operator L has an indicial equation
or order r and, using the roots of this equation, we obtain r formal log-power
series solutions of Lu = 0 (these solutions correspond to identically vanishing
determining factors). The only difference between our present system of r such
solutions and the system present in the case of a regular singular point of an
equation of order r is that in our case the series need not converge; in most cases
they only represent asymptotically r linearly independent solutions of Lu = 0
(assuming analyticity of the coefficients at x = 0 does not imply convergence).
The formal theory of the series, however, parallels exactly the theory of the
series obtained in the case of a regular singular point.

Let p,,---,p, be the roots (repeated according to their multiplicities) of the
indicial equation, ordered by Rep, = Rep, = ... = Rep,. There exists a formal
power series solution u(x) ~ X ¥_qc,x”' "/ If p, is not an integer, then we set
u(x) = X%5_oc;H(p, +j; x), and recalling that the distributions H(a,x) may
be differentiated and multiplied by integral powers of x as if they were equal to
x®, we conclude that for every N there exists an integer n such that Lu,(x)e C".
Moreover, u,(x)e H,',"f for all n. On the other hand, u,(x)¢ C(R') if Rep, <0,
and u,(x)¢ C**”'*1(R!) for Rep, = 0. Tt follows from the Proposition that L
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cannot be hypoelliptic near x = 0. (If the series X {.qc;x” 1*J converges, one
may simply set v(x) = X Zoc;H(j + py,X).)
If p, is a negative integer, we set

u,,(x) = h ch(xj+p1)+ ¥ cjxp1+j
j<-pi1 n2jz-py
and proceed as before. If p, is a non-negative integer, then] (H(x)w(x))"
= H(x)wY(x) for j < p;, where w(x) is the actual solution corresponding to
the formal solution u(x). If p, = m it follows that

L(H(x)w(x)) = H(x)Lw(x) = 0

whereas H(x)w(x) is not infinitely differentiable near x = 0. Thus L is not hypo-
elliptic. If r — 1 < p, < m — 1, then we make use of the vanishing of a;(0) for
j = r. By Leibnitz’s rule,

i
HEWE)D = How () + 2 (j)ww-f)(ma«-n(x)

1

j=p

H(x)w(j)(x) + _}: ({)W(j_i)(O)é(i“l)(x).

I

Hence

_ i=er i .
XUHEWEND = xHxwPx) + X ( { )w“‘”<0)x"f5“"’(x).
i=1
Ifj < p,, then the sum disappears. If j > p,, then, by (2.2),
nj—(i—l) = nj"(j_pl '_1) 2 nr_r'{'pl"'1 = n,.

But in the present case (case (i)) n, = 1, so that n; —(i—1) = 1. Hence
a;()HEWE) = Hx)a;(xw' (x) for all j (0= j < m) and we obtain again
L(H(x)w(x)) = 0.

If p, is a non-negative integer, p, <r—1, we turn our attention to p,. If
p, is not an integer, we can argue as before to show that Lis not hypoelliptic.
If p, is a negative integer, then a formal solution of the equation is given by

=)
u(x) ~ x"* X c;x’ + (Inx) x
j=0

% djxj.
=0

ji=
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Then

#(x)~x " T el +(In]xx" X dx’
ji=0 ji=0
is also a formal solution, since (In|x )" = 1/x. Setting

u,(x) = X R+ X oex) + X dR("In|x|)
. 150

j<—p2 j=-p2
and recalling the properties (2) and (b) of the distributions R(x*In|x|), we con-
clude that for every N there exists a sufficiently large n with Lu,e CV. But

1
u,e Hy,

(R') and u, is discontinuous at the origin, so that L cannot be hypo-
elliptic. If p, is a non-negative integer and p, = p,, then logarithmic terms are
bound to occur. If p, < p, then the logarithmic terms might disappear, and we will
have to consider p;, and so forth. We will not be through after » — 1 steps only if all
the p; are non-negative integers for 1 £ i<r~1,and p,_; < <p, <p,<r—1;
this is possible only if p,_; = 0. Hence if p, = 0, then logarithmic terms
have to appear and L cannot be hypoelliptic. Assume, therefore, that
p, < 0.1f p, is notan integer we use the distributionsu,(x) = 2% _oc;H(p, + j,X)
where X 7oc;x”*7 is a formal solution; otherwise we use the regularizations
R(xk(ln| x|)") for terms like x**/ and for logarithmic terms which might turn
out. We see, therefore, that L is hypoelliptic at x = 0 in no case, if (i) holds.

(i) 1f Q,(x) is purely imaginary for x >0 (the case where Q,(x) is purely
imaginary only for x <0 is treated similarly), then Q,(x) = iX/_,c,/x™ for
x > 0, where ¢,,d, are real numbers, and d, >0, 1 £ k < n. There exist complex
constants 4, y,, # = 0,1,..+, such that

n c @0
z —"—] x* X p,xh
=1 Ak h=0

U ~ exp [i
X

k

is a formal solution of Lu = 0 (4 is taken to be the root with the greatest real
part of the indicial equation associated with the determining factor i X% _, ¢,x%,
in order to avoid logarithmic terms). Set now v,(x) = X, _ Pty (), where
u,(x) is the distribution which regularizes H (x)x*exp[iZ - ¢,/x*]; this distribu-
tion was defined inductively in (4.4). Then Ly, e CVif t is large enough, v,e H,
for —s large enough (s is independent of ¢ if ¢ is large enough) but v, is discon-
tinuousif Re 1 < 0and isnot (Re A + 1) times continuously differentiable if Re 1= 0.
It follows from the proposition that L is not hypoelliptic. Note that we have to
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do some regularization even if Rel = 0, since differentiation of the exponential
might introduce negative powers of x.

Assume now that a,(0) = O for all j, 0 £j < m. Then, there exists a natural
number n,0<n < n,, such that L= x"L, where Lu = X7, &;(x)d’u/dx’
is a differential operator whose coefficients satisfy the same smoothness and ana-
Iyticity conditions as the a;(x), and @,(0) # 0 for at least one j. If L does not
satisfy the conditions of Theorem 1, then, by the facts proved up to now, L is
not hypoelliptic near x = 0, i.c., there exists a distribution u € 2'(V) where V
is a neighborhood of the origin, such that Zue C*(V), but u ¢ C*(V). Then
Lu = x"Lue C®(V), which proves that L is not hypoelliptic near x = 0. If L
does satisfy the conditions of Theorem 1, we shall prove that there exists a distri-
bution ue2'(V) such that Lu =& (and therefore u ¢ C*(V)). Then
Lu = x"Lu = x"6 = 0. Note first that the characteristic index m — r of L*
(the formal adjoint of L) is equal to that of L (see e.g. [1,2]). Moreover, it follows
either from classical results (by rewriting L and L* in their “normal” forms) or
by direct calculation, that the coefficient of d’/dx"inL* does not vanish at x= 0.
Also, the determining factors of L* satisfy condition (ii) of Theorem 1 if and
only if the determining factors of L do (see Section 3). Hence L* is hypoelliptic.
It follows from a standard argument involving the Hahn-Banach theorem that
Lu = § is solvable for uc 2'(V).

If the coefficients a,(x) are assumed only to be C* near x = 0 (and n,, < ),
we repeat the construction of the last paragraphs of Section 3 and apply
Lemma 3.1, Thus L cannot be hypoelliptic if M is not hypoelliptic. But if L does
not satisfy the conditions of Theorem 1, then M does not satisfy them and there-
fore (by the facts proved until now) it is not hypoelliptic.

6. Proof of Theorem 2

We begin by finding out what limitations on the orders of the zeros of the
coefficients of L follow from the assumptions of Theorem 2.

LeMMA 6.1.  Let the coefficients afx) of the differential operator
L = X7.qax)d’|dx’ be analytic in a neighborhood U of the origin and let
there exist a constant C >0 such that for xeU, { a complex number with
p(x,0) = Xlooa;(x)i0)’ =0, either M < C or [ x] ] ImC[ — o as x> 0. Then
B(r) 2 0, f(r + 1) < — 1, where m — r is the characteristic index of L. Further-
movre, n, = 0.
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Proor. It follows from the assumptions, that in the expansion (2.1), 0 > N(J)
> — g for no 0 £ j £ m, since otherwise there would be unbounded branches of
zeros of p(x,{) = 0 for which ] X f f Im¢{ [does not tend to infinity for x — 0. Recall
that r is the largest index for which f(r) = N(r)/q = — 1. Hence in our case
B(r) = 0 and f(r + 1) < — 1. By the first inequality of (2.2), n; > n, + (j — 1)
>n,forj>r. Forj<r,

ozt T P =n, + T BH+ T fH=m + = D) 2 n,

i=j+1 i=r+1 i=j+1 i=j+1

otherwise p(0,{) =0 for all complex {. Hence n; = 0 for at least one index
0<j=<m and therefore n.,=0; ie., a,(0) 0. Note also that n,
= — LT BO)-

Thus we see that condition (i) of Theorem 1 is fulfilled if the conditions of
Theorem 2 are satisfied. In the present case (analytic coefficients), condition (S)
on the branches of roots of p(x,{) is equivalent to condition (S") on the Puiseux
expansion. Hence formula (2.3) for the determination of the determining factors
may be applied.

since f(i) = 0 for i < r. Not all the coefficients a,(x) vanish at x = 0, since

Let us fix the branch of x'/? which is positive for x > 0, with a cut at {z: Imz
< 0, z purely imaginary}. The assumption |x| | ImC] — o0 as x — 0 for the un-
bounded zeros of p(x,{} = 0 implies that for every index j,m = j = r + 1, there
exists at least one index k (depending on j) with N(j) £ k < — g and Ima;, # 0.
Thus, by (2.3), every determining factor Q,(x), r+1 £ j < m, satisfies the
condition [ Re( j(x)] — oo as x—0,. By similar considerations we can also
show that [Rer(x)[ —cc as x> 0_. Hence condition (ii) of Theorem 1 is

also fulfilled.

Note that a similar argument shows that there exists a non-smooth hyper-
function solution of Lu = 0 with suppu s {0} for an operator L satisfying the
assumptions of Lemma 6.1 and condition (S) if and only if either there exist
indices j,! with r<j =< m and N(j) £ 1< —gq such that (i) Ima; ;<0 and
(i) a;, is purely real for I <k < —g, or a similar condition holds when one
considers the coefficients of the Puiseux expansion which result if we choose a
branch of x'/ which is real on the negative axis (compare Section 3).

We have thus established the sufficiency part of Theorem 2 for analytic co-
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efficients. In order to treat other cases, we apply the following theorem, due to
Ostrowski [9, p. 125]. Let

f(z) = apz" + a;2" " + - + a,. g(2) = boz" + byz" 7! + - + b,

b;
bo

ﬁ_ 1/:.

where a;, b; are complex. Set y = fmax; <;<,( p
0

8_\/2,1

there exists at least one root of g(z) (and, of course, vice versa). Moreover, the

|1/‘) and

#7". Then in an e-neighborhood of every root of f(z),

b, ao

roots {x;}, {y:}, 1 £i £ n, of f(z) and g(z) respectively, can be ordered in such
a way that |x;— y;| <2ne, 1 <i < n. We may now prove

LEMMA 6.2. Let the functions alx), 0 <j<m, be C” in a neighbor-
hood of the origin, and let the multiplicity n, of the zero of a,(x) at
x = 0 be finite. Let (2.1) be the formal Puiseux expansion associated with
p(x,86) = X7 aj(x)(ié)j. Then there exist n functions ¢,(x), -, $(x) which
are bounded for x near the origin, such that

m

-1
6.1 p(x,8) = c(x)x"" [] (Zf - X o xM 4+ ¢j(x)).
i=1 k=N()

PROOF. Seta; y(x) = X7 -0a{(0)x"/n!,and consider py(x,£)= X" oa; y(x)(i)’
Applying Ostrowski’s theorem to f(z) = p(x,&) and g(z) = py(x,&) we
find that for N sufficiently large, ¢(x) can be taken to be bounded as x — 0 and
the roots &,(x), n(x), r = 1,---,m of p(x,&) and py(x,n) can be ordered in such

a way that <2me(x),1 < r < m. For N large, the initial terms
in the Puiseux expansion of py(x,&) coincide with those of p(x,&). Also, for

every N, the series converge for x # 0. Hence, for N large enough ,

Pa(%,8) = c(x)x™ [ (5— S 4 x""'+w,(x>)

ji=1 k=N(j)

where /;(x) are analytic for x# 0 and bounded as x — 0. Thus,
Ni(x) = X tygoex* — ¥ (x). Hence (6.1) follows with

$;(x) = E(x) — n{x) — ¥ ().

We can now generalize the arguments which were given at the beginning of
this section.
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Lemma 6.1 bis. Let the coefficients ajx) of the differential operator
L= X7, aj(x)dj/dxj be C” in a neighborhood U of the origin, and let the
multiplicity n,, of the zero of a,(x) at x = 0 be finite. Let there exist a constant
C > 0 such that forxe U, { a complex number with p(x,{)=X"7_, aj(x)(iC)j =0,
either |C| < C or |x| [ImC' —oox —>0.Then B(r) 20, f(r+1) < —1, where
m — r is the characteristic index of L, and n, = 0.

The proof of Lemma 6.1 bis parallels exactly that of Lemma 6.1, (6.1) replacing
2.1).

Thus we see that the condition (i) of Theorem 1 is satisfied if the assumptions
of Theorem 2 are fulfilled. If condition (S) is satisfied, it follows from Lemma 6.2
that condition (S’) is also satisfied, so that (2.3) can be applied. Applying
Lemma 6.2 once again, we see that we can deduce from the assumptions of
Theorem 2 the validity of condition (ii) of Theorem 1 in the C ®case, in the same
way as we did above in the case of analytic coefficients. Thus, the sufficiency part
of Theorem 2 is proved.

To prove the necessity of the conditions of Theorem 2 (if condition (S) holds)
we note that those conditions are not satisfied if, in (2.1) (or (6.1)) either (i)
—g < N(j) <0 for at least one index j, 1 < j £ r, or (i) Todzd o,x e is
purely real in a (possibly one sided) neighborhood of x = 0 for at least one index
j, r+1 £ j £ m((i) and (ii) are not mutually exclusive).

(i) In this case 0 > B(r), where n—r is the characteristic index of L. All the
coefficients a;(x) are finite at x = 0. Hence n; 2 0 for 0 <j < m. Let s be
that index which satisfies f(s) 2 0, f(s + 1) <0.Then ny, = n, + X", 8())
(equality holds here, since f(s) > B(s + 1)). Hence

n, = n, + E ﬁ(])=ns_ é B(])>ns203

j=r+1 j=s+1
so that n, = 1 or a,(0) = 0. Thus, condition (i) of Theorem 1 is not fulfilled.
(ii) Since condition (S) is assumed to hold (so that by Lemma 6.2, condition
(S’) also holds) we may apply (2.3) and obtain at least one purely imaginary
non-vanishing determining factor, so that condition (ii) of Theorem 1 is not
satisfied.

Thus we have shown that the necessity of the conditions of Theorem 2 follows
from Theorem 1.
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7. Proof of Theorem 3

Let n; be the multiplicity of the zero of a;(x) at x = 0. Then a;(x) = x"/b;(x),
where b;(x) is a C” function near x = 0, and b;(0) # 0. We claim that the
conclusion (b) of Theorem 3 will follow once we prove that there exist constants
C,d,p, 0 3<p =1 and a certain neighborhood V' of the origin such that
for a,f satisfying n; = =0, j = a = 0, there exist a constant C(a,f,V),
such that

x+p . _
(7.1) X" £ Clo, B, V)| p(x, )| (1 + | &P~
oxPor®
FH
for xeV, & real, |¢]| 2 C. Indeed, Fx—@—é;aj(x)f = 0if &> j, so that we may

assume that o« < j and then 9%7/¢* = C(a,j)é~*. For a < j,

. 0
= | cne x|

at+p

W“j(x)\fj

= |C@p&™™ X (ﬁ)C(k,n,.)x"f"‘b;"""(x)\

kSmin(B.nj) k

atk
=| I bPP@C@ B k) x "
k<min(fn;) ax*oee

< [p(x 0| T C'(0, B4 ko n)(1+ [EN* < €| p(x, O (1 + |E)) 77 .

This implies the required estimates for

a+p ax+p m .
p(x,8) = — X a0
axboce oxPoer J=0

We note also that it suffices to prove the existence of an ¢ > 0 such that (7.1)
holds whenever 0 < x < ¢, since we obtain the result, by considering p(—x,£),
for —g < x < 0, and by continuity the result follows also for x = 0.

According to Lemma 6.2 we can expand p(x,¢) as

(6.1) p(x,8) = c(x)x™ ﬁ € - EN )otj.kxk"’ + ¢(x))
i=1 k=N(i

where the functions ¢,(x) are bounded as x — 0, and the constants «; ,and N(j)
are the same as in the formal Puiseux expansion (2.1). We fix a branch of
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x'/? which is positive for x > 0; this implies a specific choice of the constants
o Let m — r be the characteristic index of L. Lemma 6.1 bis can be applied,
since its assumptions are certainly satisfied. Hence no negative powers appear
in (6.1) for j £ r, and B(j) = N(j)/q < —1 for j > r. In particular we may
rewrite (6.1) as
0D o) = e 1€ +009) TT (&= Tamts g0).
i=1 j=r+t k=N(j)

Observe that Ima;,y¢) # 0 for m 2 j > r (a5, # 0 by definition), for other-
wise |[Re{| will not be bounded by C|Im{ | on the “‘curve” { = X ;2y.0x*
+ ¢;(x), a curve which is contained in the set {(x,{): p(x,{) = 0}. Recall also
that, according to Lemma 6.1 bis, n, =0. Hence X7_,.,8(j) = —n,, and
we may rewrite (7.2) as
(7.3) p(x,8) = o(x) jIJl(é + ¢j(x))j=r,1,1(x_ﬂ(j)€ — oj,n¢ T (X))
where ¥y(x) » 0 for x » 0, r+1 <j < m.

We denote by C from now on a generic positive constant which is independent
of the real variable £ if !é , is large enough, and which does not depend on x,
if x is restricted to sufficiently small positive values. Note that for r<j < m,

(7.4) |X_ﬂ(j)f — % NGy T lIlj(x)l zC
(1.5) | xPPE — oy vy +¥(0)] 2 C[x7P%].
As a matter of fact,
| Im(x—ﬁ(l)é — Ui, NG + ‘Ilj(x))l ; % |Im(dj,N(j) |
if x is small enough, and
|x7PD¢| < |Re(x™PDE — a; yijy + Pi(x)) | + [Re(angy — (%))
It follows from (7.3) and (7.4) that
(7.6) |p(x,&)| > Cle

for 0 < x < gand ¢ large enough (C and ¢ are suitable constants), so that the con-
clusion (a) of Theorem 3 is proved. It follows also from (7.3), (7.4) and (7.5) that

{x'tlf"“ﬁ(” &) < Clpx,0)|

forr+1=<1<m,0<x<eand ¢ real, |¢] large. But
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m m m 14
mzn,+ X B()=- X B+ X B(i=- X B,
ji=1+1 j=r+1 j=l+1 j=r+t
— Lyt 180)
sothat|x]"'<|x| if x| <1. Hence
(1.7 |x"¢| < C|p(x,9)].

Let o, be integers, 0 S a« <1, 0 < B < n,. Then
’ aa+ﬁxn1€l

o&°0x*

(7.8) | = Clo,m) C(B, 1| x™ 72|

C‘ xn;—ﬂgl—r—a' Iérl

1'ﬂ/n1lé—d+ﬂ(l—f)/nz l l = I'

C G

xnzél—r
C|p(x, &) |1 Pm| 2

But , p(x, 6)5"! is bounded away from zero, by (7.6). Hence we can replace
1 — B/n; by 1 in the exponent at the right hand side of (7.8). According to (2.2)
and Lemma 6.1 bis, n,— 1l >n,—~r= —r forl>r, or (I-r)/n; < 1. Settin8

A

r! é I —a+p(l—-r)/n; .

8 = max, <;<,(I—7)/n;, we find out that 6 <1 and the estimate

a+p
‘ a xmél

oxPoc”

—ap+a4p

§c|p<x,f)|\é

holds with p = 1. For [ £ r it follows immediately from (7.6) that

< clpal [¢]

xmél

| aa+ﬁ
oxPoe”
This finishes the proof of Theorem 3.
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