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ABSTRACT 

Necessary and sufficient conditions for the hypoellipticity of an ordinary 
differential operator with Coo coefficients in a neighborhood of a zero of finite 
order of the leading term are given. A suffi:ient condition for such an operator 
to be in a certain H6rmander class is also given. 

1. Introduction and statement of results 

Let L be a differential operator with Coo coefficients. L is said to be hypoelliptic 

in an open set f~ if for every u ~ ~ ' ( f~) ,  Lu E C°~(D) implies u ~ C°°(O). Ordinary 

differential operators, Lu = ~, 7= o aj(x)u~J)(x), are hypoelliptic in every open set 

where am(X) is different from zero, i.e., at all regular points of  L. The problem of 

determining whether a given ordinary differential operator L is hypoelliptic in a 

neighborhood of  a zero of am(X ) has not been considered explicitly in the literature. 

I t  is the aim of the present paper to characterize the class of  all hypoelliptic 

ordinary differential operators for which am(X ) does not have a zero of  infinite 

order (this class contains all hypoelliptic operators with analytic coefficients). 

As an illustration of this characterization, we shall give an example of~ a first 

order hypoelliptic operator, which is contained in no previously known class 

of  hypoelliptic operators. 

In order to state our main results, let us recall briefly some notions and facts 

f rom the classical theory of singular points of  ordinary differential operators 

(a more detailed description may be found in Section 2). Let aj(x), 0 < j < m, 

be C ~ functions in a neighborhood of a certain zero of am(X) (a possibly singular 
point of  L), which we take to be the origin, and we assume that am(X) vanishes 

at most to a finite order at x = 0. It is well known ([7], [8]) that there exists a 
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system of  m linearly independent formal solutions Ul(X) , " ' ,Um(X)o fLu  = 0 

with 

(1.1) ui(x) ": 8Q'(r)XO'Vi(X) 

where the Qi(x) are polynomials in x-i/qi and 

m i  

(1.2) vi(x) = ]~ vi.j(x) (log x) j 
j=O 

(1.3) vi.j(x) ,,~ ~ v..,,j,,x "/~' 
II = 0  

for 0 < j < mg, 1 < i <- m. Here mi, qi are integers ((nh > 0, qi > O) and 

the series in (1.3) do not converge, in general, even if the a~(x) are analytic. 

(The equations Lu~ = 0 hold in the sense of formal power series; the coefficients 

a~(x) are replaced by their formal Taylor expansions at the origin.) The functions 

Qi(x) are called "determining factors". Clearly, we can assume that the constant 

terms vanish in the determining factors. Let v denote the number of the deter- 

mining factors which vanish identically, and assume that Ql(x)  =- "" =- Qr(x) - o. 

We shall prove 

THEOREM 1. L is hypoell iptic in a neighborhood o f  the origin i f  and only i f  

(i) a.(0) ~ 0 and (ii) I Re Q,(x) l --+ ~ as x -~ O Jot  r < i < m. 

While it is true that the determining factors are computable from the co- 

efficients aj(x) (see [7], [8]), the actual verification of condition (ii) of Theorem 1 

is not easy, in the most general case. In many cases, however, the conditions of  

Theorem I can be given a more explicit form. 

Thus, in accordance with the usual notation in the literature on partial dif- 

ferential equations, set p ( x , ~ ) =  ~,'~=oaj(x)(i~) j - - t h e  (full) symbol of the 

operator L. It is well known that there exist m complex valued functions 

( I (X) ," ' , (m(X),  which are continuous in a neighborhood of the origin except at 

x = 0, such that p(x,~)  = a , , (x) ] - I~1  (4 -(~(x)) .  The functions ( t (x) , . . . , ( ,o(x)  

are called branches of roots of p. We shall say that the operator L satisfies the 

condition (S) if, whenever (i(x) is an unbounded branch of roots of p(x,  ~) and 

(i(x)/(j(x) ~ 1 as x ~ 0, then i = j (i.e., all unbounded branches are "asymp- 

totically simple".) If condition (S) is satisfied, then the determination of the 

determining factors is relatively easy, and we shall prove 
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TItI?OREM 2. Let L satisfy the condition (S). A necessary and sufficient con- 

dition for  the hypoelliptieity of  L at a neighborhood U of  the origin is that 

there exists a constant C > 0 such that for  x in U and ( a complex number 

satisfying p(x, O = O, either I ~ [ < C or I x l l  Im(] ~ oo as x ~ O. 

Another class of hypoelliptic operators is exhibited in the following theorem. 

THEOREM 3. I f  there exist a neighborhood U of  the origin and a constant 

C > 0  such that for  x in U, ( a complex number satisfying p ( x , ( ) = 0 ,  either 

(i) [(I < C or (ii) Ix l l Im( [ -~oo  and C I I m (  ] > I R e (  I as x-~O, then there 

exist constants O< 6 < p < 1 and a real number m', such that for  every pair 

(a, fl) of  non-negative integers and for  every compact subset K of  U, there exist 

constants C~(K) and C(a, fl, K)  such that the inequalities 

(a) I p(x,~)[ > CI(K)[~ Im' 

] [ a#~ax B 

hold for  x e K ,  ~ a real vector, [~[ > Ct(K)" 

It follows from theorem 4.2 in [5] that if (a) and (b) are satisfied, then L is 

hypoelliptic. The class of  operators described in Theorems 1 and 2 is strictly bigger 

than the class of operators described in Theorem 3. In fact, consider the first order 

operator Lu = x3u ' + (i + x)u. Then p(x,~) = ix3~ + i + x, Op/ax = 3ix2~ + 1, 

Op/O~ = ix 3. For ~ = - x -3 we get p = - ~ - + ,  Op/Ox = - 3i~ ~ + 1, 8p/O~ 

= - i~- 1. If  condition (b) were true for a compact neighborhood K of the origin, 

w e w o u l d h a v e [ s p / o x l l o p / ~ ¢ l l p 1 - 2  <= C(1 ,0 ,K)C(O,I ,K)(1  + 1¢[) - P + ~ 0 a s  

~ ~ ,  since 6 < p. But for the specified pairs of (x, 4), [Op/dx [[ 0p/a~ ][ p[ -2  

~ 31 ~ I+1¢ I - ' I¢  I' = 3 as ~ ~ ~ ,  a coatradictio a. 

It follows, however, form Theorem 1, that L is hypoelliptic. We know of no 

previously investigated class of  hypoelliptic operators which contains L. 

As a particular case of Theorem 1, we note that an ordinary differential operator 

can be hypoelliptic in no neighborhood of a regular singular point. We note also 

that if Lu = xMu where M is an operator with C ~ coefficients, then L is not 

hypoelliptic in any neighborhood of the origin, since then a,(0) = 0. 

It is well known [-3] that for every non-elliptic hypoelliptic differential operator 

L with constant coefficients there exists a hyperfunction u such that Lu e C~(f~) 

but u ~ C°~(~)) where f~ is an open set (so that u cannot be a distribution in f~). 

All ordinary differential operators with constant coefficients are elliptic. We shah 
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show that for many, though not for all, non-elliptic hypoelliptic ordinary differen- 

tial operators with analytic coefficients, there exists a non-C °° hyperfunction 

solution of Lu = 0 with suppu ~ {0}. (Thus, e I/x2 is a hyperfunetion solution 

of the hypoelliptic equation x3u ' + 2 u  = 0, but the hypoelliptic equation 

x 3 u ' - 2 u  = 0 has no non-Coo hyperfunction solutions with supp u ~ {0}). 

It is easy to see that there exists no non-smooth hyperfunction solution of Lu = 0 

with s u p p u ~  {0} if and only if R e Q j ( x ) ~ - o o  as x - ~ 0  for r < j <  m (see 

Section 3). If  condition (S) is satisfied, then this condition can be expressed in terms 

of  zeros of p(x,  ~) (see Section 6). On the other hand, there always exists a hyper- 

function solution of Lu = 0 with suppu = {0}, if the origin is an irregular 

singular point. Hence, all hyperfunction solutions of  an ordinary differential 

operator L are smooth if and only if L is elliptic. 

Note that an ordinary differential operator with analytic coefficients is analytic- 

hypoelliptic only if it is elliptic (unlike certain partial differential operators which 

are analytic-hypoelliptic without being elliptic). This is obviously true for opera- 

tors L which admit C °o non-analytic solutions for the homogeneous equation 

Lu = 0. In other cases, where all distribution solutions of the homogenous equa- 

tion are analytic (e.g., for Lu = x3u ' + 2u), it follows from the arguments of 

section 3 that there exist analytic funct ionsfsuch  that the equation Lu =fpossess -  

es a smooth solution u e Coo, but u is not analytic. 

We remark that an ordinary differential operator is locally solvable at a point 

where it is hypoelliptic (given that am(X ) does not vanish to infinite order). This 

follows either from the method of proof  of Theorem 1 or from the fact (also 

mentioned in section 3) that the formal adjoint of L satisfies the conditions of 

Theorem 1 if these conditions are satisfied for L. Thus, the phenomenon exempli- 

fied in [10] cannot occur in our present situation. 

We hope to return the questions of  the "explici t"  determination of  the de- 

termining factors and the verification of condition (ii) of Theorem 1 at another 

time. We remark in passing that, thus far, we have succeded in doing this for 

the most general second order equation. 

I am very much indebted to Professors B. Malgrange and B. Helffer for bringing 

to my attention an error in an earlier version of this paper, one in which the 

importance of the condition (S) was overlooked, and to Professor S. Agmon 

for suggesting that the theorems remain true for equations with C ° coefficients, 

rather than analytic coefficients. 
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2. Structure of solutions near singular points 

In this section, we summarize, in a form suitable for our purposes, several 

essentially well known results about the structure of the solutions of an ordinary 

differential equation in the neighborhood of  a singular point. We shall assume, 

unless otherwise stated, that not all the coefficients of  the operator 

Lu = ~ ~.=o a2(x) dJu/dx j vanish at the singular point, which we take to be the 

origin. We shall also assume that the functions aj(x) ,  0 < j  < m, are C ~° in a 
neighborhood of  the origin. Let n I be the order of  the zero of  aj(x)  at the origin. 

We assume throughout that n,, < ~ .  Suppose first that the functions aj(x ) are 

holomorphic nearx  = 0. Thenthe  symbol p(x ,~)  = Z~-=0 aj(x) ( i~)  j can be fac- 

torized, by means of Puiseux series, as 
m 

(2.1) p(x,~) = c(x)x""  11 (4 - ~ ~ "~/~ j , k ~  .t 
j = 1 k = N f j )  

where q is a positive integer, N(j )  is a finite (positive or negative) integer, c(x) 

= a,,(x)/xm"is non-zero in a neighborhood of the origin, ~j.Ncj) ~ 0 unless gj,k = 0 

for all k, and the series converge in a (maybe punctured) neighborhood of the 

origin (see e.g. I-4, p. 275]). If  the functions aj(x)  are only assumed to be C ~° near 

x = 0, then each aj(x)  gives rise to the formal power series 

n=O n! 

and (2.1) holds in the sense of formal power series; the series 

ZT- -N(j) ~j.k xk/q are formal fractional power series, and do not converge, in 

general. 

Recall that the characteristic index 1-1] or the class [2] of the operator is defined 

to be m - r, where the integer r, 0 < r < m, is specified by the requirements 

n j - j > n , - - r  for j > r  
(2.2) 

n j - j > = n , - r  for j < r .  

Set fl(j) = N ( j ) / q  if c~j,N(j) ~ 0 and fl(j) = m if~j,k vanishes for all k. We shall 

assume, from now on, without explicitly mentioning it, that the factors in (2.1) are 

labelled in such a way that the sequence f l ( j ) i s  non-increasing. We claim that 

fl(r) >= - 1 ,  and fl(r + 1 ) <  - 1 .  By equating the coefficients (in (2.1)) of 

x"J~ j we see immediately that nj > nm + ~ kin=j+1 fl(k), and that if fl(j) > fl(j + 1) 

then nj = nm+ ]~'~=j+~ fl(k). Le tp  be defined b y p  = max{j  : fl(j) > - 1}. Then 

fl(p + 1 ) <  - 1 which implies n o = n., + Y~ k~=p+ X fl(k). For j > p, 
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n j - -  np ~ fl(k) - ~ f l ( k )=  - E f l ( k ) > j - p .  
k = j + l  k = p + l  k = p + l  

For j < p ,  

111 

n j - -  np >= fl(k) -- fl(k) = ~, fl(k) > = j -  p. 
k=j+1 a=p+J k=j+l 

Hence n -- p is the characteristic index and p = r. 

The equation Lu = 0 possesses an indicial equation of order r. This indicial 

equation is obtained by equating to zero the coefficient of  the lowest order term 

in the expansion of  x -p L(x  p) (this formal expansion exists not only in the analyt- 

ic case, but also in the C oo case). It is clear that the lowest power of x in that expan- 

sion is nr - r, and that the functions aj(x) for j > r have no relevancy for the 

indicial equation. Note also that for r = 0, the indicial equation has no roots, and 

that r = m  corresponds (in the analytic case) to a regular singular point at the 

origin. 

Using the roots of the indicial equations, one obtains (by equating coefficients) 

r distinct formal power series solutions of Lu = 0; if several roots coincide or 

differ by integers, then formal log-power series are obtained. I f  r < m or if the 

coefficients are not analytic, then those formal power series do not necessarily 

converge. It can be shown, however, that they represent, asymptotically, r linearly 

independent actual solutions of  I_u = 0. This last fact is proved explicitly in the 

literature [7,8] only under the additional assumption that a / z )  are analytic for 

z=re~° ,  i r[ ,  ] 0 ] <  e ,e  > 0, and will be used only under this assumption. 

Turning now to the remaining m - r solutions of the homogeneous equation, 

we recall that in the classical theory one looks for functions Q(x) of the form 

O.(x) = E ~kx -~/q 
k = l  

(here q is not necessarily the same as in the Puiseux expansion (2.1); rather, it is 

a multiple of the integer occurring in (2.1)) such that the linear differential operator 

M defined by My = e-eL(eqv) has a characteristic index which is strictly less 

than m. Such a function Q(x) is called a "determining factor".  (Note that (2.2) 

and the discussion following it are valid also if aj(x) are expandible in fractional 

power series; in that case, the solutions are given as log fractional power series.) 

Let Q(x) be such that the characteristic index of M is m - j  < m, so that the 

equation My = 0 possesses an indicial equation of order j > 1. Hence j Ibrmal 

(log) fractional power series expansions exist for v, and it is shown in classical 



112 Y. KANNAI Israel J. Math., 

texts (e.g., in [7]), that the resulting series for u = eQo represent asymptotically 

as x ~ 0, actual solutions of Lu = 0. Moreover, using all possible determining 

factors, we obtain m - r linearly independent solutions of  Lu = 0. In this manner, 

the existence of m linearly independent solutions (1.1)-(1.3) is established in the 

classical theory. (Once again, the m -  r linearly independent formal solutions 

exist always; the existence of actual solutions is proved in the literature under the 

additional hypothesis that ai ( z  ) are also holomorphic for z = rfl  °, 0 <1 r] < e, 

101 < for ~ small enough.) 

The Puiseux expansion (2.1) gives us a simple expression for the determining 

factors under the following restriction. We say that the symbol p(x ,  4) satisfies 

the condition (S ' )  if whenever - 1 > fl(i) = fl(j)  but i # j, then ei.N,) ~ ej ,m. i ) .  

In fact, if the condition (S') is satisfied, then the derivative of  the determining 

factor Qj is given by the following simple formula: 

- q - 1  
(2.3) dQj  _ i ~ ~ x k/q 

d x  k =N(j) j,k j = r + 1 , . . . ,  m .  

In order to verify (2.3), rewrite M, using Leibnitz's rule and setting e-Q(eQ) (n) 

= S(n,  x), as 

M y  = e - e L ( e e v )  = ~. a j (x)  2 e-Q(eQ)(J-h)v(h) 
(2.4) j = o h = 0 h 

= h~=O(j~=h(Jh)aj(x)S(j--h,x))°(h'(x). 
Note that S(0, x) = 1 and S(n  + 1, x)  = S ' (n ,  x)  + S(n,  x )Q ' (x ) .  Setting now 

Q' (x )  = ]~=q+l Ck x-k/q,  we see immediately (by induction) that 

S(n,  x) = [Q'(x)] n + Rn(x)  

where Rn(x)  is a polynomial in x-1/q of degree not exceeding (n - 1)s + q. Hence 

the lowest s - q terms in the coefficient of v in M appear in ~,~=o a i ( x ) (Q ' ( x ) )  j .  

Set mino<_t~mqnt - st = w and set K = {t: 0 < t < m,  qnt - st = w}. 

Then the lowest term in the coefficient of v in M is the term of order w/q appear- 

ing in ~t ~ r at(x) (Q' (x) )  t, and the lowest term in the coefficient of v' is the term 

of order ( w + s ) / q  in Z , t ~ r t a t ( x ) ( Q ' ( x ) )  t -1 .  If  condition (S') is satisfied, 

s = - N ( j )  - q and Q'(x )  is given by (2.3), then the value of  n I for M will be 

exactly equal to (w + s)/q,  whereas the lowest ( s -  q) terms in the coefficient 

o fv  will all vanish. Thus the value of no for M is at least w/q + (s - q)/q = nl - I .  

Hence r > 1 for M and Q is indeed a determining factor. 
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If  condition (S') is violated, then other (much more complicated) methods 

have to be employed in order to calculate the complete determining factors; only 

the leading (lowest) term of the determining factor is given, in the general case, 

by means of (2.3) (this was pointed out to the author by B. Malgrange and B. 

Helffer). As mentioned earlier we hope to return to this question in the future, and 

remark here only that the second order case has been settled completely. 

Note that if the functions a j ( x )  are holomorphic for x ~ 0 in a sufficiently 

small sector, so that the formal log-power series represent asymptotically an actual 

solution u of Lu = 0, one may differentiate the series to an abitrarily high order 

and obtain an asymptotic representation of the corresponding derivative of u. 

While it is proved explicitly in [-7] that one might differentiate the asymptotic 

series m - 1 times, we see, considering also the equation (of order m + k) 

(d  k / d x k ) L u  = 0, that we may differentiate up to the order m + k - l, with k 

arbitrary. 

3. Proof of sufficiency in Theorem 1 

Let us assume, to begin with, that the coefficients a~(x) of L are C ~ functions 

in a neighborhood U of the origin and are holomorphic functions of z in a sector 

z = re '°, 0 < I rl < e, I ol < e, f o r e  small enough. Then the structure theory, 

described in Section 2, applies ([7], [8]), and (l.3) is valid asymptotically. (The 

analyticity assumption will be removed at the end of this section.) 

Assumption (i) of Theorem 1 and (2.2) imply that at(0) ¢ 0, a j(0) -- 0 for 

] > r. Thus the indicial equation of L is a , ( O ) p ( p -  1)... ( p -  r + 1 ) =  0; its 

roots are p = 0, 1, ..., r -  1. No logarithmic terms occur here (even though the 

roots differ by positive integers) and the resulting r formal power series represent 

asymptotically r linearly independent C ~° functions ui(x),  1 <_ i < r, in a neigh- 

borhood of the origin. 

Assumption (ii) of Theorem 1 implies that for every non-vanishing determining 

thctor Qi(x) (r < i < m),  either Re Qi(x)--~ d- O0 as x-~ 0+, or Re Q i ( x ) ~  - co 

as x --* 0+. If  for some i, r < i < m,  ui(x)  = eqW~)vi(x) (where vi(x) is represented 

asymptotically by a (log - )  power series---see (1.2) and (1.3)) is the restriction 

of a distribution u ~ - ~ ' ( -  e,0(e > 0) with Lu  -- O, then ReQ~(x)~ - oo. 

Otherwise ui is the restriction o fa  hyperfunction solution, but not of a distribution. 

In fact, it is easy to construct a sequence ~b,,(x) ~ C~(0, 5) with ][ q~, [].~ _<_ C(s)n aC~) 

for all real s, but ] feQ' tX)v , (x )~ , , (x )dx l  > e "e for some positive 6. i f  ReQ,(x) 
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-* - oo, then e e'Cx), and consequently u,(x) (as well as all the derivatives of  ui(x)) 

has a zero of infinite order at x = 0+. A similar argument shows that ui(0_) 

= u~)(0_) . . . . .  u~"(0_) . . . . .  0. Hence all distribution solutions ui of  

Lu = 0 (which are represeented in (1.1)-(1.3)) are C oO functions in a neighborhood 

of the origin. (Caution: a distribution solution might vanish identically/ 'or x < 0 

and be non-zero for x > 0, e.g., Lu = x2u ' - u.) Note that the same argument 

shows that there exists a non-smooth hyperfunction solution of  Lu = 0 with 

suppu ~ {0} if and only if ReQ~(x)~ + oo for x - + 0 +  or x ~ 0 _ ,  for at least 

one index r < i < m. 

We claim now that all distribution solutions of  Lu = 0 are C OO near the origin. 
m ,k ~(i) X We still have to prove that i fu  = Ei=lciH(x)u~(x ) + Yi=odi ( ) is a distribution 

solution o f L u  = 0 ,  t h e n c i =  0 f o r 1  _< i_< r a n d d ~ = 0 f o r 0  <_ i <_ k (H(x) is 

the Heaviside function, H ( x ) -  1 for x > 0 and H ( x ) -  0 for x < 0). This, 

however, follows immediately from the non-vanishing of a~(0). In fact, the relations 

L(H(x)x  j) = H(x)Lx  i + a,(O)f('-J-1)(x) + E ei , jS( ' - i - l ) (x)  
r>=i>j 

and 

~ ( i + J ) f x .  ~ L(6('i)(x)) = a,(O)b('+J)(x) + X Yi,jo ~ i 
i < r  

(r+k) X imply, first of  all, that dkar(O)6 ( ) cannot be cancelled by other terms of Lu,  

so that dk = 0. Repeating the argument, we see that all the d,'s vanish. Now 

cxa,(O)b <r-~) cannot be cancelled by any other term; hence c~ = 0, and so forth. 

(Here we have set u~(x) to be the solution corresponding to the root p = i - 1 

of  the indicial equation, 1 < i < r.) 

I t  remains to show that for eve ry f~  C°°(U) there exists a Coo function u, defined 

in a neighborhood of the origin, such that Lu = f Setting x = 0 in the differential 

equation, we get 

r - 1  

a~(O)u('(O) + E 
j=O 

By Leibnitz's rule, 

aj(O)u(i)(O) = f (O). 

dx  k l=nj 

Let m >_- j > r. Since nj > j - r for these values of j  by (2.2)and assumption (i), 
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we see that j + k - l < j + k -  nj < k + r. Hence we obtain, by differentia- 

ting Lu = f  k times and equating to zero, that 

(3.1) ar(O)u(k+r)(O) + ~ Ck.,U('~)(O) = f(k)(O) 
s~k+r--1 

where Ck,~ are constants. Thus we can find (choosing u(O),u(1)(O),...,u('-~)(O) 

arbitrarily) a sequence {u(J~(0)}j°°__ o which satisfies the infinite triangular system 

(3.1) of linear equations. It is well known that for every infinite sequence 

~5 o, fit, . . . ,  ~,, ..., there exists a function v e C°~(R ~) with v(")(0) = ~, for n =0,  1,2, .... 

Setting 6, = u('~(0) we obtain a function v e C~(R ~) having the property that the 

C OO function g defined by g = L u - f  satisfies g(')(0) = 0, n = 0, 1,2, . - . .  (g is 

defined only in a neighborhood of  the origin). Hence we have to consider only the 

inhomogeneous equations Lu = g where g(~(0) = 0 for all n > 0. 

Recall the well known variation of constants formula: 

(3.2) u(x) = ~ ej(x)uj(x) 
j = l  

where ul(x),. . . ,um(x) are linearly independent solutions of Lu -- 0, and the 

coefficients ej(x) satisfy the relation 

dc~ Aj(x) 
(3.3) dx - A(x) g(x) 

where A is the Wronskian determinant W(ul, . . . ,um),  and Aj is the algebraic 

o,-1) in the Wronskian. Let u j, ..., um be the solutions complement (cofactor) of uj 

represented asymptotically by (1.1)-(1.3). It is proved in [7] that 

Ai(x) - e-Q~x~%(x), j > r, 
A(x) 

where wj(x) is analytic for x # 0 and x~%(x) is bounded near x = 0 for N large en- 

ough.Actually there is a gap in the proof  given in [7], since the possibility o f t  > 0 

(in our notation) is completely overlooked. Nevertheless, the argument of [7] can 

easily be modified so as to take care of that case also. We now observe that L*, 

the formal adjoint of L, has the same characteristic index m - r (see e.g. ]-1, 2] ; 

it is even possible to show directly that the determining factors of L* are minus 

the complex conjugates of those of L). Moreover, it is well known (and it follows 

easily from the variation of constants formula) that the complex conjugates of the 

functions Ai(x)/A(x), j = 1,..., m form a linearly independent system of  solutions 
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of L*w = 0. There are exactly m - r linearly independent solutions of  L*w = 0 

which are not representable, even asymptotically, as sums of formal log-power 

series. Hence those solutions are precisely the complex conjugates of  A j / A ,  

r + 1 < j < m, which proves that wj(x)  is expressible asymptotically as the sum 

of  a formal log-power series, and that there exist constants M ( k )  such that  

xM(k)(Aj(x)/A(x))  (k) is bounded for x-+  O, k = O, 1, ..., 1 _-< j < r. 

It  clearly suffices to prove the existence of  a solution u (of  the equation Lu = g) 

defined for e > x  > O, such that for all k, lim u(k)(x) exists and is equal to zero. Set 

(3.4) cj(x) = 

x~O+ 

fo xAj(t) g( t )d t  A(t) 

£ ' Aj(t) g(t )dt  
A(t) 

if j <  r o r i f j >  r a n d  
Re Qi(x)-*  + oo 

x - * O +  

i f j  > r and 
Re Qj(x)  -* - oo 

x - * O +  

It  is then clear that ci(x)uj(x) tends to zero as x -* 0+, and the same holds for 

derivatives of  all orders of  cj(x)uj(x), for 1 < j < r. Set Re Q~(x) = Ri(x).  

I f  Ri(x ) ~ + Go as x -* 0+, then 

fo ilmQj(xb R j(x) -Rj( t)  -ilmQj(t) Ci(X)Ui(X) = vi(x)e w i(t)e g(t)e dr. 

Each of the functions Re cj(x)uj(x  ) and lm cj(x)uj(x)  is a linear combination with 

constant coefficients of  terms of the form ~b (x) = P(x)e R'<~) J'g e -RJmh(t)dt  where 

(1) h( t ) eC~[O,e ) ,  h(k)(0+) = 0 for all k > 0 and h(t) is real for 0 < t < e ;  

and (2) for every n there exists a constant m(n)  such that x "C") P(")(x) 

is bounded as x -* 0+. Let k be an arbitrarily large positive integer. By L 'Hop i t a l ' s  

rule, 

lim ~ b ( x )  - lim 
x-,o+ p ( x ) x  k x+o+ 

fo x e -a~(O h(t)dt  

xk e -  R j (x) 

e -RJ(x~ h(x)  
= l i m  = 0 ,  

x-.o+ e-Rj~X~(kx~-i _ R~(x)x ~) 

since Rj(x )  is an algebraic function. In particular, ~b(x) -* 0 as x -* 0+. Differen- 

tiating once, we get 
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f0 • q~'(x) = (P ' (x)  + R'j(x)P(x))e Rj(x) e-RJ(~h(t)dt  + P(x)h(x) .  

The same argument (use of L 'Hopital ' s  rule) applies to the first term, and the 

second term has a zero of order infinity. Thus lira q~'(x) -- 0, and so on. If  

Rj(x )  ~ - oo as x ~ 0+ then 

cj(x)uj(x)  = vj(x)ei'me'(~eRJ(x) wi( t)e-R~(')e-lXmQJ(') g(t)dt 

and we have to consider terms of the form 

f/ ~,(x) = P(x)e  R.'~x) e-R't~)h(t)dt,  where h and P satisfy the same conditions 

1) and (2) as above. Consider now the expression 

O(x) _ S~e-RJ"~h(t) dt I f  the numerator does not tend to infinity as x ~ 0+,  
P(x)xk  e - R j ( X ) x k  " 

we are through. Otherwise, we apply L'Hopital 's  rule once again and obtain 

lira ~(x )  ~o+ P(x )x  ~ - 0 and then continue for the higher derivatives. 

If  the functions aj(x) are only assumed to be smooth near x = 0 (and nm < co), 

we construct, (as is possible according to [8]) C oo functions bj(x) which are 

analytic for x = re i°, 0 < I rl < e, 101 < e  fore  small enough and which moreover 

satisfy the equations a.~k~(o) = bJk)(o) for all k > 0. The operator 

M = ~, bj(x)d~/dx y 

satisfies the conditions of  Theorem 1 if and only if L does, and the desired con- 

clusion will follows from 

LEMMA 3.1. Let Lu = ~ ~=oaj(x)dJu/dx j ,  Mu = ~,'~=obj(x)dJu/dx j be dif- 

ferential operations with C ~ coefficients in a neighborhood of  the origin, such 

that a~k)(o) = b~k)(o) for  k = 0,1,2, . . . ,  0 < j < m.  Let am(O) = bz(O) = O, 

but a~K)(O) = b~m(O) ~ 0 for  some positive K .  Then L is hypoelliptic near 

the origin i f  and only i f  M is hypoelliptic near the origin. 

PROOF. We restrict our attention to a neighborhood ( - e , e )  of the origin, in 

which a,, (x) or bz (x) vanish only i fx  = 0. Assume that M is hypoeltiptic near 

the origin, and let u ~ ' ( - e , e )  be such that Lu ~ C ~ ( - e , e ) .  But L is elliptic for 

x # 0, Ix I < e. Hence u ~ C ~ ( ( - e , 0 ) u ( 0 , e ) ) .  There exists a continuous func- 
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tion veC[-e/2,e/2] and an integer n such that d"v/dx" = u in ( -e /2 ,e /2)  [4, 

p. 8]. Thus Iv(x)] < C for Ix[ < e/2 and some constant C, and 

m+n d J v  

~, a j _ , ( x ) - -  = f .  
j = n d x  j 

We shall demonstrate, more generally, that if v eC°°((O,e/2)w(-t/2,0)) 

U C [ -  ~/2, ~/2"] is a solution of the equation 

t v - 1  d jr 
( 3 . 5 )  v ~N) = E ci(x) ~ + g(x) 

j = O  

for 0 < Ix ] < e/2, where for every positive integer k there exist constants D(k) 
and re(k) such that 

]c~k'(x)[, ]g(k)(x)[ _--< D(k)]x[ -re'k) for 0<14 < ~ ,  

then for every positive integer k there exist constants C(k) and n(k) such that 

(3.6) [ v(k)(x)] < C(k)x -"(k) 0 < Ix I < ~/2. 

Clearly, it suffices to prove (3.6) for 0 < x < e/2. Let xo be any number in (0, e/2), 

and let ¢eC~°(R 1) be such that ¢ ( x ) =  0 for x < l ,  ¢ ( x ) =  1 for x > 2 ,  

0 < ¢(x) < 1 for x e R  1, and set qb(x,a) = ¢(x/a) for a > O. It follows from 

(3.5 that 

[ ( x X o ) ] ( N )  N-1 div 
¢ ,-~- v = j=oY~ej(x)~+h(x) 

where ej(x), h(x) = 0 for x < Xo/3, and for every positive integer k there exist 

constants D(k, 1) and re(k, 1) such that 

(3.7) ] e~k)(x) ] , ] h(k)(x) ] < D(k, 1)Xo rock'1) for 0 < x < Xo. 

Hence we obtain from integration by parts of  the well-known formula 

N - 1  . X j  

w(x) = ; x ( x -  t)N-1 W(N)(t)dt + ]~ WO)(0))~., 
J o ~  j=o 

that 

¢ , v(x) = v(t) j=o dt i k ( N - I ) !  J 
( 3 . 8 )  

. x ( x  - t) ~ -  1 
+ ( N - l )  v h(t)dt. 

, ~0  

Differentiating (3.8) (with respect to x) for 2/3 Xo < x < Xo, we see, taking (3.7) 

into account, that 
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Iv,(x) l < c(1)Xo o, .  for x ~ [(2/3)Xo, Xo]. 

Differentiating (3.8) once more and using also the estimate for v'(x), we see that 

] v"(x)] < C(2)Xo"(2)for x E [ (2/3) x o, Xo]. Iterating the procedure we obtain the 

estimate (3.6). 

Using (3.6) for the function v ~ C[-e /2 ,  5/2] where d"v/dx" = u in ( -5 /2 ,e /2)  

(in distribution sense), we see that for q5 e C~(-e /2 ,e /2) ,  0 < j < m,  

f _  d"+J [ai(x) - b / x ) ]  diu(d?) = ( - 1 )  "+j v(x) [(aj(x) - b i(x))c~(x)]dx 
dx "i ~ dx" + j 

f_ = v (" +J)(x) [ a / x )  - bj(x)] ~b(x)dx, 

so that the distribution [ a j ( x ) - b / x ) ] d J u / d x  j is the C oo function [a j (x)  

- b / x ) ]  d"+Jv/dx "+j in ( -5 /2 ,  e/2), since the function a j ( x ) -  bj(x) along 

with its derivatives of all orders has a zero of infinite order at x = 0 for 0 < j < m. 

Hence L u - M u c C ° ~ ( - e / 2 , ~ / 2 )  and Mu~Coo(-e/2,e/2) .  The hypoellipticity 

of M implies that u ~ C °° in a full neighborhood of  the origin. 

4. Construct ion o f  certain distributions 

In proving the necessity of the conditions of Theorem 1, we shall have to use 

certain distributions which are encountered frequently while solving homogeneous 

differential equations near singular points. 

Recall the definition of the famous Heaviside function: 

H(x) = I  1 x > 0 

I 0 x < 0  

For  Re a > 0, the function H(ct, x) d=efx'H(x) is defined everywhere and it oper- 

ates naturally on C~ ° functions (by integration) so that it is a distribution. 

Moreover, for Re ~ > 1, dH (~, x) /dx = aH(a -  1, x), both in the classical sense 

and in distribution sense. We now define for Rea  < 0, a not an integer, 

H(~, x) def 1 d"H 
= (a + 1)... (ct + n) dx" (c¢ + n, x) 

where n > - R e  a and the differentiation is in distribution sense. It is clear that 

this definition is independent of  n,  and that H(~, x) is a continuous function for 

x # O, H(a,x) = x 'H(x)  for x # 0. 

Let now n > - R e  a. Applying Leibnitz's rule (which is valid for the product 

of  a C ® function and a distribution), we obtain 
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d ~ d"H(cz + n,x)  d"-lH(o~ + n,x)  
dx" (xH(o¢ + n, x)) = x dx" t- n dx"-  1 

= xH(cc, x)(c~ + 1). , . (e + n) + nH(e + 1,x)(e + 2) . . . (e  + n). 

On the other hand, 

d" d" 
dx" (xH(a + n, x))  = ~ H(e + n + 1, x) = H(c~ + 1, x) (~ + 2)... (e + n + 1) . 

Combining these, we see that 

(4.1) x H(o~,x) = H(o~ + 1,x) for e not a negative integer. 

We have to proceed somewhat differently in order to obtain suitable distribu- 

tions from terms like (ln lxl )" /x  k. Observe first that 

(4.2) X~x(ln] x])" -- m(ln I xl )  = - '  

where m is a positive integer and the differentiation is to be understood in distri- 

bution sense. (Note that (ln I x 1)=, a locally integrable function, is a legitimate 

distribution.) Indeed, for arbitrary ~ e C~(R1), 

x d ( l n l x ] ) m ( ¢ )  = d( ln lx] )m(xO)  = -(lnlxl)m((xq~) ') 

= - f : ( l n  ]x  [ ) ' (xC'(x)  + ~(x))dx 

= - lim + (In[x ])'(x~b'(x) + (k(x))dx. 
~"*0  oo 

The last equation follows from Lebesgue's dominated integration theorem. 

Integrating by parts, we obtain 

f : l  I : f :  I (ln xl)~x~o'(x)dx = x( ln  ! x )'~¢(x) - (ln I x )m~(x)dx 

_ f m(lnlxl)m-' (x)dx. 

Using the dominated integration theorem once again, we see that 

£ ~ l n l x l ) ~ x ~ ' ( x ) d x  

Similarly, 

f0 _ Inl l) m 
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Hence 

xd(lnlxl)m(¢)  = m(lnlxl)m-'(c~). 

We now define, as a first step, the regularization R(x -k) of l/x k (k is a positive 

integer) to be the distribution ( - 1 )  k- 1/(k- 1)! d k ln lx [/dx* (differentiation in dis- 

tribution sense). Setting m = 1 in (4.2) we see that xR(x -~) = 1. Applying 

Leibnitz's rule to this product of a C ~° function and a distribution, we obtain 

d k -  1 

0 - dxk_l(xR(x-1))  
d k d k - 1 

= x ~x~lnlxl + ( k - l )  ~xvcTlnlx] 

or xR(x -k) = R ( x - g + l ) .  Set also 

R(x- l ( ln  ]x ])") d ef 

( _  1)k(k_ 1)!(R(x-k + 1) _ xR(x-k)),  

1 d o n  i x}).+t 
n + l  

for n > O, where the derivative is the distributional derivative. 

Suppose now, inductively, that a regularization R(xJ(ln I xl)") of # ( ln ]x l ) "  

has been defined already for 0 < n < m and j an arbitrary integer, or for n = m 

and j > k, in such a way that the relation 

(a) xR(x-'(lnlx[)")= R(xJ+~(lnIx[) ") 

holds for n < m and j arbitrary or n = m and j >= k, and the relation 

(b) d R(xJ(l n ix I)") = nR( x j -  ' ( In Ix 1)"- ') + jR(x i -  '(In Ix 1)") 

holds for n < m and j arbitrary or n = m and j > k,  and the derivative is the 

distributional derivative. We define then 

R(xk-l(ln[x[) m) def 1 [dR(xk( ln lx})m)--mR(xk-a(Inlx[)"- l]  =- -~ 

The right hand side is well defined, by the multiple induction. The condition (b) 

is automatically satisfied. To prove (a), we observe that by Leibnitz's rule, 

(4.3) ~(xR(x~(ln[xl) ") = x~xR(x~(lnlxl) '~) + R(x~(lnlx[)m). 

Oll the other hand, applying (a) in the case n = m, j = k, we see that 
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xR(x~(In [xI)") = R( xk+~(ln Ix I)")" Using (b) in the case n = m, j = k + 1, 

we may thus rewrite (4.3) as 

mR(xk(ln Ix I)'- 1) + (k + 1)R(xk(lnlx 1)") = x dxR(Xk(ln Ix I)") + R(xk(ln • 

The last equation can be rewritten (using (a) now for n = m - 1  and j = k) as 

xd R(xk(lnlxl) m) -- mxR(x -'(in[xl) "-1) = kRCxk(lnlxlr), 

from which (a) follows in the case n = m, j = k -  1. 

Summing up, we conclude that we have found regularizations of the functions 

x~H(x) (if ~ is not a negative integer) on one hand, and of x J (In I x [ )m (for j arbi- 

trary integer, m non-negative integer) on the other hand, in such a manner that 

the formal rules of differentiation and of multiplication by integral powers of x 

carry over from the functions to the distributions. 

We have also to find a suitable distribution u~(x) such that 

u~(x) = H(x)x%xp (i ~,~,= d~ 1 ck/x ) for x # 0, where 2 is an arbitrary complex number, 

Ck, dR are real numbers, and dk > O, 1 < k < n .Assume without loss of generality 

that d. > d ._ l  > ... > d~. For  Re2 > 0 there are no problems, since the function 

x%xp(i  ~=iCk/X d~) is bounded near the origin. Furthermore, the equation 

xu~(x) = Ux+l(X) holds for Re2 > 0. Suppose now that distributions uz(x) 
have been defined for Re2 > - j  ( d . -  d._ 1) (J is a non-negat ive integer) in 

such a way, that the relations 

(i) ua(x)=H(x)x~exp ik~=l , X ~ 0 

and 

(ii) xu~(x) = ua+l(x) 

hold for Re2 > - j ( d . -  d.-1). Set now, for Re2 < - j ( d . -  d.-1), 

n-1 d ] 
(4.4) u~(x) def= i (2 + d.+l)u~+ a (x) - i  ]~ CkdkUz+n _nk - -dx  u~+n,,+l 

c.d. " k = 1 

(the differentiation is in distribution sense). This definition is legitimate for 

Re2 >__ - ( j  + 1)(d. - d . -1) ,  since for such values of 2, 
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Re(~. + d . - d k )  > Re(~. + d. - d._ ~) > - ( j  + 1 ) ( d , - d , _  i) + d, - d,_ x 

= - j ( d .  - d ._ l )  

and 

123 

x u ~ ( x )  = 

(4.5) 

n - 1  

c.d.  (2 + d. + 2)u~+d.+l(x) - i k=lE ekdkUx+a -dk+l(X) 

- u ~ + d ° + ~ ( x )  - x -d-xU~+d.+~ . 

Application of Leibnitz's rule to the product x ux+a° + 1 = ux+d.+2 (this equation 

follows from the induction hypothesis) and insertion of the results in the right 

hand side of (4.5) yields 

xu~(x) = - c.d--~. ()~ + d. + 2)ua+a°+t(x)- ik=x y~ CkdkU~+e"-a~+I(X) -- dxU~+a"+2 

= u ~ + ~ ( x ) ,  

the last equality following from the definition (4.4) of ux+l(x ) (note that (4.4) 

obviously holds for Re2 > 0). 

In a similar manner, we can define a thmily ~a of  distributions, in such a manner 

that 

p(i n ) 
a~(x) = I4( - x )x%x E 

k= 
for x ¢ 0, and (ii) and (4.4) are satisfied (with ~;. replacing ua). This can be done 

of course, only if the real numbers dk are such that ( - 1) d~ is real (for at least 

one branch). 

5. Proof of necessity in Theorem 1 

In proving the non-hypoellipticity (at the origin) of an operator L, whose only 

singularity is the origin we shall frequently use the following simple 

Re(). + d.) ,  Re(2 + d. + 1) > - j ( d .  - d ._l) .  

The relation (i) obviously holds for the new values of 2. Using the induction 

hypothesis and (4.4) we see that 

n--1 ] - i [  d 
c-~. (2 + d. + 1)uz+a.+l(x)-  ik=xZ CkdkUz+a,-a,,+l -- xd~u~+a.+l 
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PROPOSITION. I f  L is hypoel l ip t ic  in an open set V containing the origin,  

then f o r  all k , n  > 0 there exis ts  a natural  number  N such that  iJ 
loc Lu ~ CN(V) and u ~ H _ k ( V  ) then u ~ C"(V).  

As a matter of  fact, u ~ cN+m(V -- {0}) since L is elliptic in V - {0}. Set 

loe H_k(V  ) x C ° ( V )  D F = { ( u , v ) : L u  = v} .  

loc Then the projection P: F ~ H_k(V)  is really a map P: F -o C~(V)  due to the 

hypoellipticity of L. Appplying the closed graph theorem to P and noting that 

{0} is a compact subset of V, we obtain the proposition. (Similar propositions 

are frequently used by L. H~Srmander.) 

Let us assume, to begin with, that all the coefficients aj(x) are C ~° in a neigh- 

borhood of  the origin and holomorphic in the sector z = re t°, 0 < l r ]  < e, 

I 01 < e for e > 0, that a j(0) # 0 for at least one index j, and that the multiplicity 

of  the zero of a,,(x) at x = 0 is finite. The conditions of Theorem 1 are not satisfied 

if either (i) at(0) # 0 or (ii) Qi(x) is purely imaginary in a (possibly one-sided) 

neighborhood of  x = 0 for at least one index j,  r < j < m. ((i) and (ii) are not 

mutually exclusive.) 

(i) In this case n, > 1. Recall that the operator L has an indicial equation 

or order r and, using the roots of this equation, we obtain r formal log-power 

series solutions of  Lu = 0 ('these solutions correspond to identically vanishing 

determining factors). The only difference between our present system of r such 

solutions and the system present in the case of  a regular singular point of an 

equation of  order r is that in our case the series need not converge; in most cases 

they only represent asymptotically r linearly independent solutions of Lu = 0 

(assuming analyticity of the coefficients at x = 0 does not imply convergence). 

The formal theory of the series, however, parallels exactly the theory of the 

series obtained in the case of a regular singular point. 

Let Pl, "" ,P ,  be the roots (repeated according to their multiplicities) of  the 

indicial equation, ordered by Rep~ > Rep2 > ... > Rep , .  There exists a formal 

power series solution u(x)  ~ ~. ® c x ° '+j I f  Pl is not an integer, then we set j=O j 

u. (x )  = ~_.3=ocjH(p 1 + j ;  x), and recalling that the distributions H ( ~ , x )  may 

be differentiated and multiplied by integral powers of x as if they were equal to 

x ~, we conclude that for every N there exists an integer n such that L u . ( x ) e  C N. 

Moreover, u . ( x ) e  H~, c for all n. On the other hand, u . ( x ) ¢  C(R ~) if Rep l  < O, 

and u. (x )¢CR~P'+~(R ~) for Rep~ > O. It follows from the Proposition that L 
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cannot  be hypoelliptic near x = 0. ( I f  the series 

may simply set v ( x )  = Y~ i ~ o c j H ( j  + p l , x ) . )  

I f  pa is a negative integer, we set 

~.a oo ,., ~.Pl + J 
j =O,.,j.~ converges, one 

Un(X ) = Z cjR(x j+p') "1- Z cjx pI+J 
j< -.ol n >=J =-> pl 

and proceed as before. I f  Pl is a non-negative integer, thenl  (H(x )w(x ) )  u)  

= H(x )wU ) (x )  for j < Pl, where w(x)  is the actual solution corresponding to 

the formal solution u(x) .  I f  pl  > m it follows that  

L ( H ( x ) w ( x ) )  = H ( x ) L w ( x )  = 0 / 

whereas H ( x ) w ( x )  is not  infinitely differentiable near x = 0. Thus L is not  hypo-  

elliptic. I f  r - 1 < Pl < m - 1, then we make use o f  the vanishing o f  ai(O) for 

j > r. By Leibnitz 's  rule, 

( H ( x ) w ( x ) )  u)  = H(x)w(J'(x) + i=~ ( ~ )w(J-i)(O)6(i-l '(x) 

J~'°'( J )w(J-i)(O)6(i- = H(x)w(J)(x) + 1)(x) .  
• i =1  \ i  

Hence 

x"J(H(x)w(x))(J) = xnJH(x)w(J)(x) -'}- /=1  wfJ-i)(o)xnj~(i-1)(X)" 

I f j  < pl ,  then the sum disappears. I f j  > Pt ,  then, by (2.2), 

nj - (i - 1) >= n i - ( j  - Pl - 1) > n, - r + Pl + 1 => n,. 

But in the present case (case (i)) n, ~ 1, so that  n j -  ( i - 1 ) >  1. Hence 

a . i ( x ) (n (x )w(x ) )  (j) = n ( x ) a j ( x ) w  ( j ) (x )  for all j (0 < j < m) and we obtain again 

L ( H ( x ) w ( x ) )  = o. 

I f  Pl is a non-negat ive integer, Pl < r - l ,  we turn our  at tention to Pz. I f  

P2 is not  an integer, we can argue as before to show that  L i s  not  hypoelliptic. 

I f  P2 is a negative integer, then a formal  solution o f  the equation is given by 

~ + 4 x  j. 
j = O  j =0  
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Then 

x 1)2 c/+(lnl l)x1)  
j = 0  j=O 

is also a formal solution, since ( l n lx l ) '  = l /x .  Setting 

= + d g(x '+JlnJx[) 
j <  -I)2 J =  -1)2 j = O  

and recalling the properties (a) and (b) of the distributions R(xklnl x I), we con- 

elude that for every N there exists a sufficiently large n with Lu,, ~ C N. But 
loc I u, ~ Hp2 ( R )  and u, is discontinuous at the origin, so that L cannot be hypo- 

elliptic. I f  P2 is a non-negative integer and P2 = P~, then logarithmic terms are 

bound to occur. I f  p2 < p~ then the logarithmic terms might disappear, and we will 

have to consider P3, and so forth. We will not be through after r -  1 steps only if all 

the p~ are non-negative integers for 1 -< i _< r -  1, and p,_ a < .-. < P2 "~ Pl < r -  1 ; 

this is possible only if p,_~ = 0. Hence if p, = 0, then logarithmic terms 

have to appear and L cannot be hypoelliptic. Assume, therefore, that 

p, < 0. I f  p, is not an integer we use the distributions Un(X) = ~ = oejH(p, + j, x) 

where ~] }~=oCjX p~'+j is a formal solution; otherwise we use the regularizations 

R(xk(lnl xl)" ) for terms like x p"+j and for logarithmic terms which might turn 

out. We see, therefore, that L is hypoelliptic at x = 0 in no case, if (i) holds. 

(ii) If  Qj(x) is purely imaginary for x > 0 (the case where Qj(x) is purely 
i n a k imaginary only for x < 0 is treated similarly), then Qj(x)= Y~k=l cJx for 

x > 0, where % d k are real numbers, and dR > 0, 1 --< k < n. There exist complex 

constants ,~, ~ ,  h = 0, 1, ..., such that 

is a formal solution of  Lu = 0 (~ is taken to be the root with the greatest real 

part of  the indicial equation associated with the determining factor i E" k = x Ck xa~ , 

in order to avoid logarithmic terms). Set now vt(x) = Eth=O~'hUh/q+~(X), where 

uu(x) is the distribution which regularizes H(x)x"exp[iZ~= 1 Ck/X~"]; this distribu- 

tion was defined inductively in (4.4). Then Lvt ~ C N if t is large enough, v, ~ H~ 

for - s  large enough (s is independent of t if t is large enough) but v, is discon- 

tinuous if Re 2 < 0 and is not (Re 2 + 1) times continuously differentiable if Re 2 > 0. 

It  follows from the proposition that L is not hypoelliptic. Note that we have to 
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do some regularization even if Re2 > 0, since differentiation of  the exponential 

might introduce negative powers of x .  

Assume now that a j(0) = 0 for all j ,  0 < j __< m. Then, there exists a natural 
? n  number n,  0 < n __< nm, such that L = x"Z,, where Lu  = ~j=o a j ( x )dJu /dx j  

is a differential operator whose coefficients satisfy the same smoothness and ana- 

lyticity conditions as the a j (x ) ,  and aj(0) # 0 for at least one j .  I f  L does not 

satisfy the conditions of Theorem 1, then, by the facts proved up to now, ~, is 

not hypoelliptic near x = 0, i.e., there exists a distribution u e ~ ' ( V )  where V 

is a neighborhood of  the origin, such that L u  e C ~ ( V ) ,  but u ¢C°~(V).  Then 

Lu = x"Lu e C ~ ( V ) ,  which proves that L is not hypoelliptic near x = 0. I f  L 

does satisfy the conditions of Theorem 1, we shall prove that there exists a distri- 

bution u e ~ ' ( V )  such that Z , u = 6  (and therefore u ¢ C ~ ° ( V ) ) .  Then 

Lu = x"Lu = x"6 = 0. Note first that the characteristic index m -  r of/~,* 

(the formal adjoint o f~ )  is equal to that o f~  (see e.g. [1, 2]). Moreover, it follows 

either from classical results (by rewriting L and L* in their "no rma l"  forms) or 

by direct calculation, that the coefficient of d~'/dxrinf, * does not vanish at x = 0. 

Also, the determining factors of L,* satisfy condition (ii) of Theorem 1 if and 

only if the determining factors of L do (see Section 3). Hence L* is hypoelliptic. 

It follows from a standard argument involving the Hahn-Banach theorem that 

Lu = ~i is solvable for u e ~ ' ( V ) .  

If  the coefficients ai(x ) are assumed only to be C ~ near x = 0 (and n,, < oo), 

we repeat the construction of  the last paragraphs of Section 3 and apply 

Lemma 3.1. Thus L cannot be hypoelliptic if M is not hypoelliptic. But if L does 

not satisfy the conditions of Theorem 1, then M does not satisfy them and there- 

fore (by the facts proved until now) it is not hypoelliptic. 

6. Proof of Theorem 2 

We begin by finding out what limitations on the orders of the zeros of the 

coefficients of L follow from the assumptions of Theorem 2. 

LEMMA 6.1. Let  the coefficients aj(x) o f  the di f ferential  operator  

L = ~ . = o a ; ( x ) d i / d x  i be analy t ic  in a neighborhood U o f  the origin and let 

there exist  a constant C > 0 such that f o r  x e U, ( a complex  number  with 

p ( x , O  = 7£~.=oaj(x)(iO j = O, either I~l < c or l xll  Im~l -~ oo as x -~O.  Then  

fl(r) > O, fl(r + 1) < - 1, where m - r is the characterist ic index o f  L. Further-  

more,  n r = O. 
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PROOF. I t  follows from the assumptions, that in the expansion (2.1), 0 > N(j )  

__> - q for no 0 _<j < m, since otherwise there would be unbounded branches of  

zeros of  p(x,  O = 0 for which t x I I Im  (Idoes not tend to infinity for x - ,  0. Recall 

that r is the largest index for which fl(r) = N(r ) /q  > - 1. Hence in our case 

fl(r) > 0 and fl(r + 1) < - 1. By the first inequality of  (2.2), nj > n~ + ( j -  r) 

> n ~ f o r j > r .  For  j <  r, 

nj > n,,, + fl(i) = n m  + ~, fl(i) + f l ( i ) =  n, + fl(i) >= n r 
i = j + l  i = r + l  i = j + l  i = j + l  

since flU) > 0 for i < r. Not  all the coefficients ai(x  ) vanish at x = 0, since 

otherwise p ( 0 , ( ) = 0  for all complex (. Hence nj = 0 for at least one index 

0 < j  < m and therefore n r = O ;  i.e., a , ( 0 ) # 0 .  Note  also that nm 

j= ,+l  fl(J). 

Thus we see that condition (i) of  Theorem 1 is fulfilled if the conditions of  

Theorem 2 are satisfied. In the present case (analytic coefficients), condition (S) 

on the branches of  roots of  p(x, () is equivalent to condition (S') on the Puiseux 

expansion. Hence formula (2.3) for the determination of the determining factors 

may be applied. 

Let us fix the branch OfX l/q which is positive f o r x  > 0, with a cut at {z: I m z  

< 0, z purely imaginary}. The assumption I x [I lm ~[ - ,  ~ as x - ,  0 for the un- 

bounded zeros of  p(x,  () = 0 implies that for every index j, m > j > r + 1, there 

exists at least one index k (depending on j)  with N(j) < k < - q and Im~j,k ~ O. 

Thus, by (2.3), every determining factor Qj(x), r + 1 < j < m, satisfies the 

condition I ReQ~(x)I - , o e  as x ~ 0 + .  By similar considerations we can aIso 

show that l R e O & )  I - ,  oe as x - , O _ .  Hence condition (ii) of  Theorem 1 is 

also fulfilled. 

Note that a similar argument shows that there exists a non-smooth hyper- 

function solution of Lu = 0 with supp u ¢ {0} for an operator L satisfying the 

assumptions of  Lemma 6.l and condition (S) if and only if either there exist 

indices j ,  1 with r < j  < m and N(j)  < 1 < - q  such that (i) Ime~,z< 0 and 

(ii) c9. k is purely real for l <  k < - q ,  or a similar condition holds when one 

considers the coefficients of  the Puiseux expansion which result if we choose a 

branch of x ~/~ which is real on the negative axis (compare Section 3). 

We have thus established the sufficiency part  of  Theorem 2 for analytic co- 
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efficients. In order to treat other cases, we apply the following theorem, due to 

Ostrowski [9, p. 125]. Let 

f ( z )  = aoz" + al z" - I  + "" + a,, g(z) = bo zn + blz  "-~ + ... + b,, 

ai ] l/i, b~ ° 1/i)and where ai, bi are complex. Set y = ½maxl<i_<.( a~ 

/3 .~_n~f y, i=1 ~0 _ .  bi a ~ o ~ - ,  . Then in an e-neighborhood of  every root o f f ( z )  

there exists at least one root of g(z) (and, of course, vice versa). Moreover, the 

roots {x~}, {y~-}, I < i _< n,  o f f ( z )  and g(z) respectively, can be ordered in such 

a way that ] x i - y i ] < 2 n e ,  1 <_i<_ n.  We may now prove 

LEMMA 6.2. Let the functions a j (x) ,  0 < j < m ,  be C ~ in a neighbor- 

hood of  the origin, and let the mult ipl ic i ty  n,. o f  the zero o f  am(x) at 

x = 0 befinite.  Let  (2.1) be the formal  Puiseux expansion associated with 

p(x, 4) = ]~'=o aj(x)( i¢)  j .  Then there exist n functions c~l(x),.. . ,Om(x) which 

are bounded for  x near the origin, such that 

(6.1) p(x,~) = c(x)x"" ~ 1 ~ - k =]~mi)aJ'kXk/q + ~)j(X) . 

PROOF. Set aj,u(x ) = y u = oa~,)( O)x,/n !, and consider pu(x,~) = ~,~.= oaj,N(x)( i~)( 

Applying Ostrowski's theorem to f ( z ) =  p(x,~)  and g ( z ) =  p u ( x , ~ ) w e  

find that for N sufficiently large, e(x) can be taken to be bounded as x ~ 0 and 

the roots ~r(x), qr(X), r = 1,... ,  m of p(x,  ~) and pu(x, tl) can be ordered in such 

a way that [ ~,(x) - r/,(x) ] < 2m e(x),  1 <_ r <_ m.  For N large, the initial terms 

in the Puiseux expansion of pu(x ,4)  coincide with those of  p(x ,~) .  Also, for 

every N ,  the series converge for x # 0. Hence, for N large enough,  

) p ~ ( x , 4 )  = c ( x ) x  .... ~ - E ~j,~x ~1" + Or(x) 
j = I k = N ( j )  

where ~kj(x) are analytic for x ~ 0  and bounded as x ~ 0 .  Thus, 

~ j ( X )  = ~ k = , q ( j ) ~ . j . k . , ~  --¢i(x). Hence (6.1) follows with 

4)~(x) = Cj(x)  - h i ( x )  - O & ) .  

We can now generalize the arguments which were given at the beginning of 

this section. 
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LEMMA 6.1 bis. Let the coefficients a~(x) of the differential operator 

L = ~,7=oai(x)dJ/dx j be C °~ in a neighborhood U of the origin, and let the 

multiplicity nm of the zero of am(X) at x = 0 be finite. Let there exist a constant 

C > 0 such tha t forx  ~ U, ~ a complex number with p(x, () = ]~ ~'=o aj(x)(i() ~ = O, 

either Icl < c or  ~ 0 Then fl(r) > o, fl(r + 1) < - 1 ,  where 

m - r is the characteristic index of L, and n~ = O. 

The proof  of  Lemma 6.1 bis parallels exactly that of Lemma 6.1, (6.1) replacing 

(2.1). 

Thus we see that the condition (i) of Theorem 1 is satisfied if the assumptions 

of Theorem 2 are fulfilled. If  condition (S) is satisfied, it follows from Lemma 6.2 

that condition (S') is also satisfied, so that (2.3) can be applied. Applying 

Lemma 6.2 once again, we see that we can deduce from the assumptions of 

Theorem 2 the validity of condition (ii) of Theorem 1 in the C °°case, in the same 

way as we did above in the case of  analytic coefficients. Thus, the sufficiency part 

of Theorem 2 is proved. 

To prove the necessity of the conditions of Theorem 2 (if condition (S) holds) 

we note that those conditions are not satisfied if, in (2.1) (or (6.1)) either (i) 

q < N(j)  < 0 for at least one index j,  1 < j < r, or (ii) v , -~- t  , ,  .~,.k/q is - -  ~ ~ _ ~  ~ - ~ k = N ( j )  ~ j , k  . ~  

purely real in a (possibly one sided) neighborhood of x = 0 for at least one index 

j,  r + 1 < j < m ((i) and (ii) are not mutually exclusive). 

(i) In this case 0 > fl(r), where n - r  is the characteristic index of L. All the 

coefficients aj(x) are finite at x = 0 .  Hence n j > O  for 0 < j  < m. Let s be 

that index which satisfies fl(s) >-_ O, fl(s + 1) < 0. Then n s = n,, + ]~'=~+lfl(J) 

(equality holds here, since fl(s) > fl(s + 1)). Hence 

nr = nm + ~ fl(j) = ns - ~ fl(j) > n, >= O, 
j = r + l  j = s + l  

so that nr > 1 or at(0) = 0. Thus, condition (i) of Theorem 1 is not fulfilled. 

(ii) Since condition (S) is assumed to hold (so that by Lemma 6.2, condition 

(S') also holds) we may apply (2.3) and obtain at least one purely imaginary 

non-vanishing determining factor, so that condition (ii) of  Theorem 1 is not 

satisfied. 

Thus we have shown that the necessity of the conditions of Theorem 2 follows 

from Theorem 1. 
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7. Proof of  Theorem 3 

Let nj be the multiplicity of  the zero of aj(x) at x = 0. Then aj(x) = x"~b~(x), 
where bj(x) is a C ~ function near x = 0, and b~(0) ~ 0. We claim that  the 

conclusion (b) of  Theorem 3 will follow once we prove that there exist constants 

C, 6, p, 0 < 6 < p < 1 and a certain neighborhood V of the origin such that  

for ~,fl satisfying n~ > fl > 0, j __ c~ > 0, there exist a constant C(ct, fl, V), 
such that 

(7.1) .xnJ~ j 

~xBO~ ~ 
c(~,/~, v)lp(x,¢)[(1 + I~1) ~a-~ 

for x ~ V ,  ~ real, Il l  >= c Indeed, -ffx-~-~aj(x)~J = 0 i f ~ > j ,  so that we may 

assume that ~ =< j and then Y ~ J / ~  = C(~,j)~ j-~. For  ~ =< j ,  

0~+P . c3 a 

k=<min(~ ,nj) 

---- ~. bfP-k)(x)C(o~,fl,j,k, nj) o~+k--x "J~J ] 
I 

This implies the required estimates for 

- - p ( x , ~ )  = ~ aj(x)~Ji I 

We note also that it suffices to prove the existence of an e > 0 such that (7.1) 

holds whenever 0 < x < e, since we obtain the result, by considering p ( - x ,  O,  

for - e  < x < 0, and by continuity the result follows also for x = 0. 

According to Lemma 6.2 we can expand p(x, ~) as 

f i  - 1  (6.1) p(x,~) = c(x)x"" (~ - • ~ x k/q j.k + ¢j(x))  
j = l k = NCj) 

where the functions ~i(x) are bounded as x - -  0, and the constants 0~i, k and N(j) 

are the same as in the formal  Puiseux expansion (2.1). We fix a branch of 
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x ~/q which is positive for x > 0; this implies a specific choice of the constants 

c9. k . Let m - r be the characteristic index of  L. Lemma 6.1 bis can be applied, 

since its assumptions are certainly satisfied. Hence no negative powers appear 

in (6.1) f o r j  < r ,  and fl(j) = N(j)/q < - 1  for j >  r .  In particular we may 

rewrite (6.1) as 

j = 1 j = r +  1 k = N ( j )  

Observe that Im~,mj~ ~ 0 for m > j > r (~j,N(j~ # 0 by definition), for other- 

wise IReffl will not be bounded by C I Im£ I on the "curve" ( = ~: V2~,~j,kx k/q 
+ ~bj(x), a curve which is contained in the set {(x,(): p(x, 0 = 0}. Recall also 

that, according to Lemma 6.1 bis, n r = 0. Hence ~ ' = , + l f l ( J ) =  -nm,  and 

we may rewrite (7.2) as 

(7.3) p(x, 4) = c(x) ~1 (4 + qbj(x)) ~-~ (x-~J~ - o~j,s(j~ + ~ ( x ) )  
j = l  j = r + l  

where ~ j (x )  -+ 0 for x --+ 0, r + 1 < j < m. 

We denote by C from now on a generic positive constant which is independent 

of  the real variable ~ if I~ I is large enough, and which does not depend on x,  

if x is restricted to sufficiently small positive values. Note that for r < j < m,  

(7.4) I x-P(J)~ - o~,NO.) + W~.(x) ] > C 

(7.5) Ix-a(J) - ++/x) l  >-- 
As a matter of fact, 

] lm(x-a(J~¢ - %,mJ~ + q'j(x))] > ½[Im(~,mi, I 

if x is small enough, and 

I I =<- [Re( x-a(j)~ - ~y,mJ) + VJ(x)) I + [Re(~J,mJ')- Wj(x))[. 

It follows from (7.3) and (7.4) that 

(7.6) > c1¢1' 

for 0 < x < e and { large enough (C and e are suitable constants), so that the con- 

clusion (a) of Theorem 3 is proved. It follows also from (7.3), (7.4) and (7.5) that 

1 

lx - = ' +  ¢ '  I z c lv(x, ¢)1 

for r + 1 < l < m,  0 < x < e and ~ real, 141 large. But 
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nt ~ nm + fl(J) = -- f l ( J )+ # ( j )  = -- E f l (J) ,  
j = l + l  j = r + l  j = / + l  j = r + l  

! 
-£s=,+ l#(J) 

SO that  Ix I " ' <  Ix [ if  I x I < 1 Hence  

(7.7) I x " , ¢ ' l < c l p ( x , ¢ ) [ .  

Let c~,/3 be integers, 0 < ~ < l ,  0 < fl < hr. Then 

l 
~ ' O x  p 

= c lx" ' -~¢ ' - ' - ° l  I¢'1 

= clx"'¢"1'-"°'1¢-=+'"-"'"'1 l~l" 

But I p ( x , ~ ) ~ - ' l  is bounded  away  f rom zero, by (7.6). Hence  we can replace 

1 - ~/n, by 1 in the exponent  at the right hand  side of  (7.8). According  to (2.2) 

and L e m m a  6.1 bis, n z -  l > n , -  r = - r  for  l > r ,  or  ( 1 - r ) / n  I < 1. Setting 

6 = max,<~<_, , ( l - r ) /n t ,  we find out  that  6 < 1 and the estimate 

t a=+a x"'( <= Clp(x,O I ¢[-=,+~B 
holds  with p = 1. Fo r  l < r it follows immediate ly  f rom (7.6) that  

i 0=+p -= 
x.,~, __< c lp(~ ,¢) l  

This finishes the p r o o f  of  T h e o r e m  3. 
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